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The assumption that rational expectations always lie on a convergent path is subject to an
empirical test using the German hyperinflation data. The estimation technique employs a
Kalman filtering algorithm. After presenting a brief background for the convergent expectations
problem and a derivation of the various model specifications, a generalized expectations model
and its attendant Kalman filtering estimation technique are discussed. Additional estimation
details and empirical results are then presented. Based on an assumption of normally distributed
errors, the null hypothesis of convergent paths is rejected in all situations involving a
deterministic specification of the evolution of the unobserved parameter which characterizes the
convergent path. The same null hypothesis is rejected in four of the six cases corresponding to a
stochastic specification of the evolution of the unobserved parameter which characterizes the
convergent path. A discussion of these findings, their economic significance, and suggestions for
further research concludes the paper.

1. Introduction

Elsewhere Burmeister (1980, 1982) has summarized the conceptual
problems which arise in rational expectations modelling due to the common
assumption that rationally formed expectations always lie on convergent
paths. When this assumption is not made — and sometimes even when it is
— the model is not determinant in the sense that there exist many stochastic
paths for the actual variables, all of which are consistent both with
equilibrium in every time period and with the rational expectations
hypothesis. Accordingly, since the postulate of convergent expectations
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carries with it important economic implications, and because the postulate is
testable, a careful empirical investigation is merited.

A general framework within which this stability issue can be analyzed
empirically has been developed by Wall (1980). A brief background for the
convergent expectations question is provided in section 2, along with a
derivation of the various model specifications we shall investigate. In section
3 we turn to the generalized expectation model and discuss how it is applied
to obtain econometric estimates for data from the German hyperinflation.
Additional details regarding estimation are presented in section 4 along with
the empirical results.

2. A brief background and derivation of the basic model

The common assumption that rationally formed expectations always
converge is crucial for at least three reasons. First, in many models this
assumption is needed to determine a unique monetary equilibrium at each
instant; without this convergence assumption, the future path of the economy
modeled might be indeterminate, even without uncertainty. Second, the
assumption of convergent expectations is commonly used to provide cross-
equation restrictions which facilitate identification and econometric
estimation; thus, most econometric estimates of rational expectations models
are conditional upon this assumption. Third, if markets are not always in
equilibrium, then there exist many cases in which the assumption of
convergent expectations is untenable because it implies a contradiction.!-?

!See Burmeister, Flood and Turnovsky (1979). Burmeister (1980, 1982) provides a survey of
some conceptual issues in rational expectations modelling, including the question of convergent
expectations. Burmeister, Flood and Garber (1983) have shown that there is only one type of
indeterminacy in rational expectation models; in the model considered here, there is
indeterminacy whenever expectations are not convergent because there exist an infinity of
equilibrium rational expectations paths with divergent expectations.

2The fundamental problem of non-convergent price expectations which in turn may cause the
problem of divergent actual prices, has been recognized for over twenty years. Writing in 1957,
Samuelson discussed the issue of non-convergent paths:

So much for the avoidable difficulties introduced by infinite time. Now to return to the
intrinsic difficulty. 1 shall call it the ‘tulip-mania phenomenon.’ Let the market maximize
over any finite time, adding in at the end into the thing to be maximized a value for the
terminal amount of grain left. At what level should this terminal grain be valued? We could
extend the period in order to find out how much it is really worth in the remaining time
left; but this obviously leads us back into our infinite regression, since there is always time
left beyond any extended time. We are back into maximizing over infinite time.

But suppose we do what the market itself does in evaluating any stock Q(t) at any given
date; suppose we simply evaluate it at the then ruling market price Py{t). Then we
immediately run into the paradox that any speculative bidding up of prices at a rate equal
to carrying costs can last forever. This is precisely what happens in a tulip mania or new-
era bull stock market. The market literally lives on its own dreams, and each individual at
every moment of time is perfectly rational to be doing what he is doing. [Samuelson (1957,
pp. 215-216)].
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In order to make the above ideas concrete, we shall base our discussion on
the following simple stochastic monetary model:

mi()—p()=b—alp*t+1,0)—p*t, 1)), a>0, (2.1a)
p*+L=Ep(t+1), (2.1b)
m(t) =g +a,m(t—1)+e(t), (2.1c)
me(t) = m(t) + u(?), (2.1d)
where
03] =logarithm of the price level at time ¢;

Ep(t +h) =conditional expectation of p{t+h), h=0,1,.., formed at time
t based upon all the information available at time ¢, which
ts assumed to be I(f)={ab,ag,0y; plt—1),pt—2),..; m{t—1),

m(t—2),...}

m(t} =logarithm of the nominal stock of money at time ¢

m(t) =logarithm of the demand for the nominal stock of money at time
5

(1) =serially uncorrelated stochastic disturbance in the money supply
over the period (¢t —1,7) with E[&(t)|1(1)]=0;

u(t) =serially uncorrelated stochastic disturbance in the price

adjustment equation over the period (t —1,t) with E[u(t)|1(t)]=0;
a =a positive constant related to elasticity of the demand for real
balances with respect to the expected rate of inflation;

b =a constant reflecting other variables influencing the demand for
money which are held constant;

Ay, Uy =parameters of the money supply equation.

The system described by these four equations can be viewed as a simple
extension of the models used by Sargent and Wallace (1973) and Black
(1974), which now include stochastic disturbances in the money supply. Eq.
(2.1a) follows these previous authors in specifying the demand for real money
balances to be a function of the anticipated rate of inflation over the period
(t,t+1). These expectations are formed rationally in the sense of Muth
(1961), and accordingly the expected price level is specified to equal the
conditional expectations of actual prices, as described by (2.1b). Eq. (2.1¢)
determines the evolution of the stochastic money supply. Finally, eq. (2.1d)
describes stochastic equilibrium in the money market. The stochastic



258 E. Burmeister and K.D. Wall, Estimation of rational expectations
disturbances, &(t) and u(t), are assumed to be sequentially independent with
zero means.?

The model reduces to

m(t)—p()=b—a[p*(t+ 1,1) — p*(t, )] + u(t), (2.2)
and

m(t)=oo + o, m(t — 1)+ &(1). (2.3)

Assuming that economic agents know the parameters a, b, oy, and o, with
certainty, taking rational expectations of (2.2) and (2.3) at any time t+h>t,
yields

m*(t+ht)—-p*t+h ty=b—alp*(t+h+1,t)—p*t+h,1)], (2.2)
and

m*t+h )=og+oa,m*(t+h—1,1), (2.39
where h=0,1,2,....

The solution to the difference eq. (2.3") with initial condition m*(t—1,1)

=m(t—1) is

do

——,  h=0,1,2,.... (24
a1 24)

m*(t+h, t)=[&—a—01—+m(t—1)]a'{“-
L~

Substitution of (2.4) into (2.2') gives

b 1
p*t+h+ 1,t)=5+<l +E> p*(t+ht)

1 oo %o
= t—1 h+1 7O ,
a{[a1—1+m( )]al al—l}

3We assume that the joint process, (t), defined by
&(t)= [e(t), u(1)7,

constitutes a zero mean, sequentially independent vector stochastic disturbance. Specifically,

E,2e()=0, (a)

E {e(t)e' (1)} =0, (b)
for all t#t, and

E{s(t)e'(1)} =R < 0, (©)

for t=1.
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or
bo, —b 1
p*(t+h+1,t)=~————a1 +“°+ 14— ) p*(t+ht)
alo, — 1) a
1 oo hl )
—— +m(—-1) i, h=0,12,.... (2.5)
ala;—1

Since (1+1/a)>1 as the parameter a is positive, the only possibility for
convergent price expectations arises from the ‘forward-looking’ solution to
(2.5),

— oy +b—bay
oy —1

(1+1/a)" %o & a )’
+—————a [m(t_1)+a1~l]g=h+1<1+1/a> . (2.6)

Accordingly, the initial condition consistent with convergent expectations is
uniquely given by setting h=0 in (2.6); assuming that —1<(x,/(1+ 1/a)) <
+1, this yields the special initial condition

p*(+h )=

—ag+b—bu o o
*(t, t) =—— Ly ! t—1)+——|. 2.7
P& o, —1 1+a—an, m(t=1) oy —1 @7
The crucial economic significance of (2.7) — which itself was derived by
imposing the assumption that price expectations are convergent — stems

from the fact that it determines actual prices which are then given by

p(8)=p*(t, ) — (1) +&(0), (2.8)

where p*(t,z) is determined from (2.7). To derive (2.8), subtract (2.2") with
h=0 from (2.2) and subtract (2.3") with =0 from (2.3), giving

[m{t)— p()] — [m*(t, ) — p*(t, 1) ] = (),

and

m(t)—m*(t, 1) =¢&(2).

Substituting the latter into the former yiclds (2.8).
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If alternatively one assumes that

p(t)=mo +m m(e) + mom(t — 1)+ w3 u(t),

for some non-zero n,, n,, m, and n3, and then imposes rational expectations,
the solution obtained is identical to that given by (2.7) and (2.8). This latter
procedure (sometimes called the ‘undetermined coefficient’ algorithm) may be
equivalent, as it is in this example, to assuming convergent expectations.*

However, (2.6) is not the unique ‘forward-looking’ solution to (2.5) if the
assumption of convergent expectations is dropped. There are an infinity of
divergent ‘forward-looking’ rational expectations solutions obtained by
adding the unstable term

c(l+1/a) (2.9)
to (2.6), where ¢, is an arbitrary constant. This gives

—0og+b—ba, oy
o —1 1+a—ax,

P =c,+ |:m(t~ ) P 1]. (2.10)

061—

In this model the assumption that expectations are always convergent is
equivalent to imposing ¢,=0 for all .

Our approach will be to treat ¢, as an unobserved variable which is
estimated jointly with the other unobserved variables — p*(t,t), p*(t +1,1t),
and m*(t,t) — and with the other parameters of the model. The details of
this technique are spelled out in section 3 and 4 below.

The ¢’s are restricted by the rational expectations hypothesis to satisfy

Elc,s| 0] =c(1+1/a), 211

where the information set 1(t) is now expanded to include ¢, ¢, ,¢,_3,...."

A stochastic process consistent with the restriction (2.9) is

c,+1=<1 4%) ¢+ (1), (2.12)

where E[n(t-l—h)ll(t)] =0 for h=0,1,2,....° Thus the actual c,,, differs from

“See Burmeister (1982) for a complete discussion of this issue.
>This restriction follows from the fact that rationality necessitates

E[p*(t+h+ L+ B |10 =p*+h+1,0),
ie.. ‘What I now think I will expect in the future is the same as what I do expect now.’

°For estimation purposes we shall require the stronger assumption that the joint process
[e,(8), uy (1), n(t)]" is a zero mean, sequentially independent vector stochastic disturbance, where
g()=e(t)—e(t—1) and p()=p(t)—pu(t—1);, see footnote 3. We furthermore assume that
E(e, (0On()]=E[u,()n(t)] =0 but ¢,(t) and u,(t) may be correlated.
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the expectation E[c,,, |1(£)] by the random error term #(t) which we assume

has finite variance.
Our complete model consists of egs. (2.3), (2.8) and (2.12).

Derivation in difference form

Estimation difficultiecs were encountered which were circumvented by
respecifying the model in first differences. Thus we define the expected

inflation rate
a*¥t+ht+h)=p*t+h+ 1L, t+h)—p*@t+ht+h),

and the corresponding actual inflation rate
n(t+h)=pt+h+1)—p(+h), h=0,12,....

Likewise, the expected and actual money growth rates are defined as

g+ ht+h)=m*(t+h+1,t+h)—m*(t+ht+h),
and

git+h)=m(t+h+1)—m(t+h), h=0,1,2,...,
respectively. Moreover, for all h=0,1,2,... we have that
E[n*(t+h t+h) | 1)) =n*(t+h,1),
and
E[g*(t+ht+ )| ()] =g*(t +h,1).
From eq. (2.2),

glt+h)—a(t+h)=—alr*(t+h+1,t+h+1)—n*(t+h,t+h)]
+ult+h+1)—u(t+h),

for all h=0,1,2,..., while (2.3) implies that

git+h=a,glt+h—D+et+h+1)—c(t+h), h=0,1,2,....

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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We make the following alternative assumption about the stochastic processes
governing (2.2) and (2.3); it implies that &(t) and u(t) are random walks:

For all h=0,1,2,...,
E[,u(t+h+1)—u(t+h)}l(t)]=0, (2.21)
and
E[e(t+h+1)—e(t+h) | 1(1)] =0, (2.22)
where

I(t)={a, g, 0; pt—1), pt—2),..; m{t —1),m(t—2),..; C1yCi— 1, .-}

In view of assumption (2.21), taking conditional expectations of (2.19) at
time ¢, using the information set 1(f) known at that time, yields

g¥t+h)—n*t+ht)= —a[n*t+h+ L, O)—n*(t+h,t)]+0, (2.23)

h=0,1,2,....
Analogously, (2.20) and (2.22) imply that
g*t+h=a,g*¥t+h—1,1)+0, h=0,1,2,.... (2.24)
The solution to the difference eq. (2.24) is
g*t+ht=o""1g*t—1,1), h=0,1,2,..., (2.25)
where the initial condition is calculated as
g*(t—1,0=E[g(t— D |1()]=0,g(t—2). (2.26)

Then, substituting (2.25) and (2.26) in (2.23) results in the difference equation
w*t+h+1,0=1+1/a)n*(t +h,0)—(1/a) [« 2g(t —2)]. (2.27)

The ‘forward-looking’ stable solution to (2.27), which is analogous to (2.6),
is

" 0
¥t +h,t)=(1/a)(1 + 1/a)"oc1g(t—2)o=;+ . [1 zll/ail

h+2

oy
= g(t—2), 2.2
1+a—aa, & ) (228)
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provided —1<|a,/(1+1/a)|<+1 as we shall assume. Thus setting #=0 and
h=1 in (2.28) we may calculate

2

o
1, ) =——g(t—2), 2.29
T*(t,1) 1+a_am1g( ) (2.29)
and
a3
T+ 1, ) =———g(t—2). (2.30)
1+a—an,

It is easily verified that (2.29) and (2.30) satisfy (2.27) with h=0; they
represent rationally formed expected inflation rates which are consistent with
the assumption of convergent expectations.

In general, however, the solutions to (2.27) which are consistent with
‘forward-looking’ rational expectations are of the form

h+2

b =c(l+ g +— g2, h=0,12,... (2.31)
14+a—ao,

where the ¢’s satisfy (2.12). Note that (2.31) and (2.28) are equivalent if and
only if ¢,=0 in (2.31). However, for non-zero c¢,, (2.31) is not convergent since
lim,_, (14 1/a)*= + co. In view of (2.12), we see that

2

3
*t,t)= —g(t—-2 .
Y=oy, o 80=2) (232
and
of
¥+ L+ )=c, +———— gt —1). (2.33)
1+a—an,

Substituting (2.32) and (2.33) into (2.19) with h=0 gives

ass

gt)—n(t)= —a(c,41—c) [e(t—1)—g(t—2)]

1 +a—ao,
+u(t + 1)—p(t). (2.34)

We now take conditional expectations of (2.34), using the fact that
| 21 ’I(t)] =¢,(1+ 1/a) from assumption (2.12),

g )—n*t )= —c . Le(t—1)—g(t—2)]. (2.35)
14a—aa,
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Subtracting (2.34) from (2.35) yields

n(t)—*(t) =ac,, , — (1 + a)c, + &t + 1) — s(t) — p(t + 1)+ p(t), (2.36)

since g(t)—g*(t,t)=¢&(t+ 1) —&(r). The first two terms on the right-hand side of
(2.36) sum to an(t), and therefore

E[n(t)—n*(t,1)[1(1)]=0,

confirming that expectations have been formed rationally.

As noted below, we found it necessary to consider a second-order money
growth rate process. Thus following Flood and Garber (1980), we also have
estimated another version of the model for which the model supply process is
respecified as

g)y=op+ (A +a)glt—1)~o, g(t—2)+ w(2), (2.37)

where o(t) is a white noise process. Eq. (2.37) implies

g¥t+ht)=g(t—2)+ i ila (1—ai*?)[g(t—2)—g(t—3)]
1
o ®g0ty .
s (h+2)+ 5 fr,E (@+2—1). (2.38)

These expectations for the rate of growth of the money supply then yield the
following specification for the evolution of the inflation expectations:’

e+ 1t + ) —n* ) =[c s —c ]+ [t —1)—glt—2)]

2
frets)
1—a l+a—ao,

x [g(t—1)~2g(t —2)+g(t—3)]. (2.39)

"Eq. (2.39) is derived from
X+ hte 1+ Vay +(1/a(1+1/a) Y (1+1/a)"g*(+0—1,1)
h

0=h+1

%o

=c,(1+l/a)"+g(t~2)+1 (h+2+a)
—a,
Loy ! %Xy ot
—~1 -1 t—2)—g(t—3)],
-|-(1—oc1)2[1+a—aat1 l—o, | l+a—ao, Lt =2)~g(t=3)]

which is the general solution to the difference equation
¥+ h+1,0)=(14+l/a)yn*({t + h,t)—(1/a)g*(t + h, 1),
i.e.. it is the solution to (2.23).
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Finally, the actual rate of inflation is given by
n(t)=7*(t, 1) + an(t) + o) — u(t + 1)+ u(t), (2.40)

with E[=(t) ‘ I(t)] ==*(z,t), again confirming rational expectations.

3. A state space model of expectation formation

The empirical investigation of the convergent expectations question can be
approached in a number of ways. Perhaps the most attractive from a
traditional econometric viewpoint is to solve the system analytically and
substitute these solutions into the behavioural system (2.2)—(2.3). The result is
a system of equations involving interequation restrictions that are amenable,
at least in principle, to standard regression techniques. While such an
approach eliminates the bothersome appearance of unobserved variables like
p*(t+h,t) and ¢, it may not be the least complicated since it necessitates the
formation of convolutions on m(t— 1) and u(t).

An alternative approach, and the one taken here, is to retain the explicit
reference to the unobserved variables. To wit, a state space form
representation is employed wherein the unobserved variables become state
variables. Drawing upon a well-developed theory from control engineering, it
is then possible to obtain simultaneously estimates of both the model
parameters and the unobserved expectations. This permits a much easier test
of certain hypotheses than would otherwise be the case. Since such an
approach is relatively unfamiliar, we first present the state space
interpretation of models introduced in section 2, and describe its estimation.

3.1. The state space model

Let x(f) be an n-vector of state variables, u(t) an m-vector of ‘inputs’, and
y(t) an l-vector of ‘outputs’. Then a state space model relating these variables
to one another is given by

x(t+ 1)=Fx(t) + Gu(t)+ I'n(z), 3.1
y(t)=Hx(t)+ Du(t) + £(t). (3.2)
Both #(t) and &(t) denote vectors of random variables such that

E{n()}=0, E{e(®)}=0,
and

E{n(0),n'()}=Q0,,  E{&(t),(s)} =R0,,
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F,G,I', H, D, Q, and R are constant real matrices of dimensions compatible
with the vector-matrix operations above, and §,, denotes the Kronecker delta
function. The Ix ! variance—covariance matrix R is always assumed positive
definite, while the nxn variance-covariance matrix Q need be only non-
negative definite (i.e., positive semi-definitive).

In the context of section 2, three state space representations of the rational
expectations hypothesis can be obtained, depending upon the use of p(f) and
m(t), or n(t) and g(¢t). In the first instance, a state space model arises once we
make the following definitions:

x'(t)=[c,] )
u'(t)=[m(t), p(t), m(t —1),1]
n'(O)=[n@)] r. (3.3)

Y @) =[m(®), p(t)]
& (t)=[(1), &(t) — u(®)] J

The coefficient matrices appearing in (3.1) are then
F=[1+1/a], G=[000 0], r=[1],

while those appearing in (3.2) become

0 0 oy oo
D= o 1 Ol
00 ! bl —u,)— et
l+a—an, (al—l)I: (1= OCO—l_lJra—aozl

There is only a single state equation since imposing rational expectations
produces a closed form expression for p*(t,t). Thus, given (2.10) and m(t—1)
one can compute p*(t,t)—c, exactly. Price expectations under the rational
expectations hypothesis only become ‘unobserved variables’ insofar as their ¢,
component is concerned, and thus only ¢, need be a state variable. The first
equation of (3.2) is merely (2.3), while the second is a combination of (2.8)
and (2.10).

A second state space model representation is required to describe the
differenced version of section 2. This is obtained by making the following
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definitions once the o, term has been reintroduced in (2.20),

~

x¥(O)=Lencir—ald

' (t)=[g(1), n(t), g(t — 1),g(t —2), 1]
n'()=[n(®)n(t+1)] & : (34)
Y (t)=[2®), n(1)]

gM)=[e(t+1)—e(r),e(t+1)—e(t)—p(t+ D)+ p(t)] )

The coefficient matrices of the state equations for this version of the model
become

[ 1+1a 0 [o0o o000 [1 0
F_[(l/a)(l+1/a) o]’ G_[o 0 0 0 o} F—[l/a 1}’

while those of the output equation, (3.2), become

00 o 0 o
0 0 1 (1]
H=[ :l, D= (1+a)a, —aa?

0 a o
0 0 l+a—an; l14+a—aa, °

The first state equation is just (2.12). The second represents the evolution of
¢.+1—C, Which can be obtained by noting that

Crva—Copr=(1/a)e,y (F+(t+1)

=(1/a)(1 + 1/a)c, +(1/a)(t) +n(t +1).

The two equations in (3.2) are derived from (2.20) and (2.34), respectively.

As described in the next section, it was found necessary to respecify a
second-order money growth rate process in place of (2.20). Following Flood
and Garber (1980), g(¢) was assumed to obey a first-order autoregression in
its second differences, i.e.,

[g(t)—g(t— )] =0 +a, [g(t — 1)~ gt = 2)] + (1),
or

gt)=ao+(1+a)g(t—1)—o,g(t—2)+ w(t).
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Here w(¢), as usual, is assumed to be a zero mean white noise process. With
g(t) obeying the above, a third state space model representation is obtained
by employing the foilowing definitions:
x’(t) = [ct’ Cre1—6]
u'(t)=[g(t), n(t), g(t — 1), g(t —2), g(t — 3), 1]
n'(0)=[n(t), n{t—1)] - 3.5)

Y ()= [g(t), n()]

&(t)=[o(®), o(t)— u(t + 1) + u(0)]

~

The coefficient matrices of the state space representation for this version of
the model become

F=[ 1+1/a 0]’ G:[O 0 0 00 0} r:[l 0]’
(1/a)(1+1/a) O 000000 l/a 1

while those of the output equation, (3.2), become

He 0 0 Do 00 1+a, — 0y 0 a
10 af 10 0 14+a,4+a4 —o,—aB aC do |

where

3
oy o 1
A=|1 -~ : ,
[ +1~o¢1 l—a, 1+a~aa1]
8|14 20 207 1 ’
l—a; 1—a; 1+a—aq,
ol 2 S 1 .
l—ay 1—oa; 1+a—ao,

The state equations appear exactly as in the model associated with (3.4). The
only differences appear in the output equations.

Conversion of the model into (3.1}(3.2) is desirable primarily to permit the
use of Kalman filtering. Estimates of the elements of x(t) can be directly
obtained, and these estimates are minimum-mean-square error. Furthermore,
the Kalman filter can be employed to produce innovations sequences
(residuals) which may be used to iteratively compute estimates of the model
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parameters along with estimates of x(t). Moreover, both state and parameters
estimation can be effected in the absence of stability and stationarity
assumptions. This makes the state space representation and its attendant
estimation via Kalman filtering particularly well suited to address the issues
raised in section 1, and is the prime reason for representing the model in the
form (3.1)-(3.2). In estimation algorithm is briefly described below.

3.2. State estimation

For expositional convenience first consider the problem of estimating x(f)
given the parameters of F, G, I', H, and D, together with the first two
moments of y(t) and u(t). If £(¢t,7) denotes the minimum-mean-square error
estimate of x(t) given the model and all observed data up through time 7,

Y ={p(1),yQ2)...»(1)},

Ut= {Il(l), y(2), [P ”(T)}’

then £(z,t) is produced by the following recursive computation:

2(t+1,t)=FX(t,t)+ Gu(t), (3.6)
P(t+1,0)=FP(y,t)F +TQT", (3.7)
B(t+1,))=HP(t+1,t)H +R, (3.8)
t+ 1L, 0)=y(t+1)—HE(t+1,t)—Du(t+ 1), (3.9
K(t+1)=Pt+1,0)H B (¢t +1,0), (3.10)
e+ 1Lt+ D=2+ 1,0+ K@+ Dé(t+1,1), (3.11)
Pi+1,t+1)=[I—K(@+ DH]P(t+1,1), (3.12)

for t,<t<T P(t+1,t) is the variance—covariance matrix of the estimation
matrix error in £(t+ 1,¢), i.e.,

P+ 1,0)=E{[x@t+1)—20¢+1,0)][x@¢+D—x¢+1,0)]}.
B(t+1,t) is the variance—covariance matrix of the innovation, i.e.,

B(t+1,0)=E{&t+ 1,08t + 1,1)'}.
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The initial values for £(t,7) and P(t,t) are assumed known and given by

£(tg, to) =%(0)=E{x(t,) given all information at time ¢4},

P(to, to) = P(0) = E{[x(to) — £(0)] [x(to)— £(0)]'}-

Thus P(t,7) is the variance—covariance matrix of the error in estimating x(t)
given all observations up through time (t <t). The vector &+ 1,1) represents
the innovations process and is analogous to the model residuais used in
econometric estimation. Egs. (3.6}-(3.12) constitute the Kalman filter.

More efficient estimates of the states can be obtained by utilizing all the
sample information available; i.e., £(¢, T). This is referred to as the smoothed
estimate. It is derived from the filtered estimate, £(¢, 1), by means of a reverse
‘sweep’ over the data from T back to t+1. Broadly speaking, computation is
as follows: the recursive Kalman filter is employed in reverse time ‘beginning’
at time T using a diffuse ‘prior’ for (T, T+ 1), i.e, P(T, T+1)=occ. For any
time ¢t in the closed interval [0,T], this reverse time filter produces an
estimate, £(¢,1+ 1), along with its corresponding variance—covariance matrix,
P(t,t+1). This represents our best estimate of x(¢f) using data only over the
interval [t+1,T]. Combining this with our forward time estimate, %(t,¢),
using only data over the interval [0,t], gives us the desired result, £(¢t, T). The
method of combination follows from a classical result in probability and
statistics; namely, the optimal combination of two independent estimates
%(t,t) [with precision matrix P~(t,£)] and £(t,t+ 1) [with precision matrix
Pt t+1)]is

£(t, T)=P(t, [P~ (t, 0)%(t, 1)+ P~ (¢, t + DR(t, £ + 1)],
with corresponding precision matrix
PH, T)=P Y (t,0)+ P~ '(t,1+1).

Details of the smoothing algorithm employed below are given in Cooley,
Rosenberg and Wall (1977). Thus, once filtered estimates are obtained, they
can be revised by the smoothing algorithm to produce the most efficient
estimates of x(t).8

3.3. Parameter estimation

Using the Kalman filter to generate model residuals enables the formation
of a loss function that can be used in parameter estimation. The parameters

81t can be shown that P(t,))=P(t,T) for t,<t=<T This should be intuitively clear since, by
definition, %(t, T) uses more information than x(t,t). See Jazwinski (1970, ch. 7) or Bryson and
Ho (1969, ch. 13).
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to be estimated may not only include the unknown elements of H, D, and R
(the parameters of the behavioral equations), but more importantly those of
F, G, I', and Q. The algorithms for estimation of the unknowns in this
manner are called ‘prediction error’ methods and, like the Kalman filter, are
thoroughly treated in the control literature [see Caines (1976), Ljung (1979),
and Ljung and Caines (1979)]. The algorithm employed in the present study
is outlined by the following steps:

Step 1. Collect the unknown parameters into a vector @ of dimension N x 1.
Denote an initial guess at its true value by 6° and insert this into the
Kalman filter egs. (3.6)-(3.12). Set i=0.

Step 2. Using the Kalman filter egs. (3.6)—(3.12), compute the model
innovations sequence {§(t+1,1); to<t<T—1} where é(t+1,1)=8&t+1,t,0% is
an implicit function of @',

Step 3. Form the loss function J{¢) where

T-1

o1
J(é?'):E Y e+ 1Ly ALY &G+ L) +In(det A, . 4,)], (3.13)

t

and A,,,,, is some positive definite weighting matrix.

Step 4. Compute an improved estimate of 6, denoted €'*!, such that
JO@THY<J(#). Use

0i+1:0i_pin 1&](’0‘)/80,

where p' is a (scalar) step size parameter and M,"' is a positive definite
N x N matrix such that in the limit (as i—»oc) it tends to the inverse Hessian
of J. (See discussion after Step 5.)

Step 5. Check to see if ||6'" ' — 6| <, and/or ||eJ (6" ")/00]| <4,. If so, stop;
0"+ is accepted as the ‘best’ estimate of 0. Otherwise, set §' to 81, i=i+1,
and return to Step 2. If it is assumed that &(t) is normally distributed for each
t,and A, ), is set equal to B(t+1,1), then approximare maximum likelihood
estimates are obtained; see Anderson and Moore (1979).

The iterative algorithm given above requires an initial estimate, 6° a
convergence criterion, ¢, and/or §,; and expressions for the components of
the gradient vector 0J(6)/00. The gradients may be computed numerically
using simple finite first differences of J(0) or analytically using a
straightforward application of differential calculus to (3.13). The method by
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which p’ and M; computed depends on the particular function minimization
algorithm employed. A Davidson-Fletcher—Powell Variable Metric algorithm
is used here since then M; ! is computed automatically, with 8J(0)/00 being
the only user supplied information. Upon convergence M; ! is the inverse
Hessian of J(#) (i.e., the information matrix) and yields valuable information
concerning estimated parameter standard errors, correlations (covariances),
and indentifiability. In particular, once the algorithm converges, a simple
scaling of M; ! produces an estimate of the parameter variance—covariance
matrix. Not only is this estimate useful in hypothesis tests on elements of 6,
but also in examining identifiability. Since local identifiability and asymptotic
non-singularity of the Hessian matrix are equivalent, a nearly singular M; !
indicates identification problems. In practice, this is most easily tested by
converting the parameter variance—covariance matrix to a correlation matrix
and examining the off-diagonal elements. Interparameter correlations near
unity, say +0.996, lead to a singular condition suggesting an over-
parameterized specification and lack of complete identification. Moreover, a
singular Hessian for J(#) results in non-convergence of the numerical
optimization algorithm so that lack of convergence and lack of identification
are highly related. These facts are extremely helpful in deciphering the
estimation results given in section 4.

4. Estimation details and results

The state space model associated with the definitions in (3.3), {3.4), and
(3.5) each contain six unknown parameters: a, o, o, a,f, and the two distinct
elements of the symmetric 2 x 2 matrix R, 67 and o2. In order to guarantee
that the estimates of R always be positive definite during estimation, the
lower triangular Cholesky factorization was used to define the unknowns
related to R; namely, R was represented as

R— g, O g, O,
AR | R |
A likewise representation was employed for the Q matrix, ie.,
Q=[o,l[0o,]
for the levels model, while
0= o, O}l{o, o,/a
o,fa 0,[0 o,

for the differenced models.
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The initial state estimate, £(0), and its error variance—covariance matrix,
P(0), constitute another five unknowns. These were not estimated but fixed at
a specified value since, asymptotically they do not affect the results.® Thus
the @ vector is defined as

0=lab,ayx,0,0,0,

Upon convergence of the iterative algorithm for 8, the Kalman filter is
cailed to produce filtered’ estimates %(z, t) for x(¢), i.e.,

£, 0)=E{c| Y, U,

for the levels models, and
£,(t,)=E{c,| Y, U},
£,(60=E{c,s —c, | Y, U},

for the differences models. Finally, given 6 and £(t,t), the smoothing
algorithm is called to produce %(¢, T) which constitute our best estimates of
the state variables given all the sample information. These are to be
interpreted as our conditional expectation (conditioned on the observed data
sample) of the variables employed by a representative economic agent in
forming the rational expectations consistent with the given model.

4.1. Estimation results

Estimation of (3.1)<(3.2) was carried out using price data taken from
Zahlen zur Geldentwerrung in Deutschland 1914 bis 1923, Reimar Hobbing,
Berlin, 1925. Money supply figures were taken from table VII of Flood and
Garber (1980). The same period for both price and money covered January
1919 through June 1923. Six different bubble phenomena were considered, all
lasting until June 1923 but beginning in different months. Beginning dates for
the bubbles were: January 1919, October 1919, July 1920, June 1921, June
1922, and January 1923. The third, fifth, and sixth bubbles correspond
exactly with those treated by Flood and Garber (1980).

Initial attempts to fit the levels model, (3.3), failed. No convergence in the
iterative procedure was obtained due to severe negative correlation between

°Given a completely observable model, it can be shown that the filter is uniformly
asymptotically stable with asymptotic solutions independent of the initial data; see Jazwinski
(1970), Bucy and Joseph (1968), for example.
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®, and o, (estimated at —0.994 after approximately sixty iterations). This
problem was also evident in the serial correlation properties of the residuals
in the money supply equation. For these reasons the levels model was
abandoned in favor of the differenced version (3.4).

Two versions of (3.4) were estimated. In the first o, was estimated along
with the other model parameters, while in the second it was constrained to
unity (reflecting the belief that the money growth rate was best modeled as a
perfect second difference). In both cases the residuals for the money growth
rate failed to satisfy tests for no serial correlation, significant serial
correlation being present at lag one. Hence, this model was dismissed from
further consideration and a slightly more elaborate money supply process
specified.

Estimation of the more elaborate model, (3.5), produced none of the
problems associated with the previous cases. Convergence of the iterative
estimation scheme was achieved in each instance and all estimated residual
series met the serial correlation tests. Results for this case are presented in
tables 1, 2, and 3'%!! and in fig. 1. The first table presents the parameters
estimates. In each of the six bubbles a significant non-zero ¢, is obtained.
Moreover, a slight negative correlation between « and o, is revealed. The
second table presents the smoothed estimates for the ¢, trajectories and their
associated estimation error variances. Significant ¢,’s appear in the last two
months of the sample for all bubbles except those bubbles starting in to June
1922 and January 1923.!2 This behavior is due to a combination of the

'0All standard errors reported in table 1 require a special interpretation similar to that given
in Flood and Garber (1980, fn. 18) because the state space representations associated with (3.3)
and (3.4) are unstable (i.e., each has an F matrix with one eigenvalue equal to 1+ 1/a which lies
outside the unit circle), and result in a situation analogous to the ‘exploding regressor’ case in
econometrics. Thus, we must view our data sample as one drawing from a cross-section of
repeated hyperinflations, all with the same pre-1920 events and behavioral parameters. In this
sense the length of the data sample is fixed at 40 observations (March 1920 through June 1923),
while the number of repetitions, N, of this sample tends to infinity. The estimates obtained here
then are both asymptotically consistent and normal [see Goodrich and Caines (1979)].

''The degrees of freedom for the g(t) equation Q statistic are obtained by interpreting this
equation as a standard ARMA (2,0) model for g(¢). For the n(t) equation the interpretation is
not so clear since a state variable appears on the right-hand side; we no longer have an
equivalent ARMA (p,q) model. What has been done is to assume the estimated residuals
themselves comprise a given time series and that an ARMA (0,0) model has been fit. A Q-
statistic test for ‘model’ adequacy then translates into an approximate test for ‘whiteness’.
Alternatively, both residuals could be subjected to a test of significance using as the 95%
confidence band +2/,/51~ +0.28 [see Box and Jenkins (1973, pp. 177, 178, 290)].

12The confidence regions are computed from the diagonal elements of the P(t,t) matrix in the
filtered case, and P(¢, T) matrix in the smoothed case. Each of these matrices implicitly depends
on the # vector through the F, H, Q, and R matrices [see (3.6)~3.12)]. Thus in computing these
variances we are treating the parameters as known exactly, i.e., that the representative economic
agent takes these parameter estimates as given. Incorporation of the uncertainty in 6 in
generating both P(t,t) and P(t, T) requires solution of a nonlinear filtering problem for which
only approximate solutions exist [see Jazwinski (1970, chs. 7 and 8)].
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Table 2
Smoothed estimates for ¢, and its error variance (stochastic case).
Date é, var (¢,) é var ()
—0.96978E —02 0.67962E —02
—0.14638E—01 0.60995E — 02
—0.35449E — 02 0.58531E—02
0.62814E—02 0.57661E —02
0.12753E-01 0.57353E-02
0.25363E—-01 0.57244E —02
0.42444E —01 0.5720SE - 02
1919 0.65732E—01 0.57192E - 02
0.74394E - 01 0.57187E—-02
0.65182E—01 0.57185E—-02
0.60193E -~ 01 0.57185E—02 0.18349E —01 0.52747E — 02
0.62803E —01 0.57184E—02 0.28148E 01 0.51242E—-02
0.71523E—-01 0.57184E —02 0.38369E — 01 0.50705E — 02
0.51461E—~01 0.57184E—02 0.36600E — 01 0.50512E—-02
0.13465E —01 0.57184E — 02 0.84662E — 01 0.50443E —02
—0.14556E —01 0.57184E —02 —0.12408E-01 0.50419E—02
—0.20715E-01 0.57184E—02 —0.16966E — 01 0.50410E —02
—0.20090E --01 0.57184E —02 —0.16530E-01 0.50407E — 02
—-0.13201E--01 0.57184E —02 —0.11154E-01 0.50406E — 02
1920 —0.85290E-02 0.57184E —02 —0.72770E-02 0.50405E —02
—0.77643E~-02 0.57184E—02 —0.65281E —02 0.50405E — 02
—0.10285E--01 0.57184E —02 —0.84264E —02 0.50405E —02
—0.77554E - 02 0.57184E — 02 —0.64241E-02 0.50405E — 02
—0.68827E~02 0.57184E—02 —0.59086E ~ 02 0.50405E — 02
—0.49274E—-02 0.57184E—-02 —0.44136E —02 0.50405E — 02
—0.73732E-02 0.57184E —02 —0.60923E 02 0.50405E — 02
—0.59325E~-02 0.57184E—02 —0.48097E ~02 0.50405E—02
—0.25324E-02 0.57184E—02 —0.19065E —02 0.50405E — 02
0.38328E—02 0.57184E —02 0.31695E —-02 0.50405E — 02
0.13562E — 01 0.57184E-02 0.10986E —01 0.50405E —02
0.25212E-02 0.57184E—02 0.20197E - 01 0.50405E — 02
1921 0.42244E 01 0.57184E—02 0.33643E--01 0.50405E — 02
0.38616E —01 0.57184E—02 0.30889E - 01 0.50405E —02
0.39410E—01 0.57184E - 02 0.31698E - 01 0.50405E — 02
0.39058E — 01 0.57184E—02 0.31950E 01 0.50405E — 02
0.22489E —-01 0.57184E—02 0.18688E —01 0.50405E — 02
0.25583E—01 0.57184E—-02 0.20876E — 01 0.50405E —02
0.40303E —-02 0.57184E—-02 0.33426E - 01 0.50405E — 02
0.55538E—01 0.57184E — 02 0.43451E—-01 0.50405E —02
0.40235E —01 0.57184E—02 0.32238E—-01 0.50405E —02
0.29562E —01 0.57185E—02 0.24695E —01 0.50406E — 02
0.48818E —01 0.57185E—02 0.36697E —01 0.50406E — 02
0.68459E —01 0.57187E-02 0.55665E —- 01 0.50408E —02
1922 0.79930E — 01 0.57191E—-02 0.65666E —01 0.50414E —02
0.56356E —01 0.57202E-02 0.48586E — 01 0.50429E —02
0.40878E — 01 0.57235E—02 0.38051E—01 0.50473E—-02
0.13801E-01 0.57328E - 02 0.18189E 01 0.50595E —02
—0.30168E—01 0.57590E — 02 —0.14239E 01 0.50937E — 02
—0.17545E - 01 0.58332E—-02 —0.24994E — 02 0.51892E—-02
0.19843E —01 0.60432E — 02 0.29375E-01 0.54563E —02
0.51674E —02 0.66370E — 02 0.25994E — 01 0.62034E — 02
1923 0.11964E + 00 0.83165E—02 0.12541E + 00 0.82927E—01
0.28851E+ 00 0.13065E—01 0.27570E 4+ 00 0.14136E - 01
0.46800E + 00 0.26503E — 01 0.45073E + 00 0.30477E - 01
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Table 2 (continued)

Date ¢, var (¢,) é, var(¢))
—0.57448E—-03 0.61546E —02
—0.89755E—03 0.57464E — 02
—0.26551E—-02 0.56006E — 02
1920 ~0.59627E—02 0.55485E—02
—0.49082E - 02 0.55299E — 02
—0.49542E-02 0.55233E—-02
—0.38566E — 02 0.55209E —02
—0.56433E—02 0.55201E—02
—0.44986E — 02 0.55198E —02
—0.17578E—02 0.55197E-02
0.31062E—02 0.55196E — 02
0.10604E — 02 0.55196E —02 0.15446E —01 0.11119E—-01
1921 0.19477E 01 0.55196E — 02 0.25618E—01 0.10364E —01
0.32412E—-01 0.55196E —02 0.42682E —01 0.10126E—01
0.29773E—-01 0.55196E — 02 0.37539E—-01 0.10051E—01
0.30542E—-01 0.55196E — 02 0.38207E—01 0.10027E—-01
0.30825E—01 0.55196E — 02 0.38662E —01 0.10020E—01
0.18055E —01 0.55196E — 02 0.19781E—01 0.10017E—01
0.20125E—-01 0.55196E — 02 0.22281E -0t 0.10017E-01
0.32150E—01 0.55196E — 02 0.38858E—01 0.10016E—10
0.41736E—01 0.55196E — 02 0.52068E — 01 0.10016E—01
0.30978E — 02 0.55196E — 02 0.36295E—01 0.10016E—01
0.23840E — 01 0.55197E-02 0.25795E —01 0.10016E—01
0.35442E—01 0.55197E - 02 0.4182SE—0t 0.10016E—01
0.53742E—0t 0.55200E — 02 0.67814E —01 0.10016E—01
1922 0.63540E — 02 0.55206E—02 0.82394E — 01 0.10017E—01
0.47308E—01 0.55224E—-02 0.59642E —01 0.10018E—01
0.37418E—01 0.55274E—02 0.46840E — 01 0.10020E—01
0.18588E—01 0.55414E —02 0.19865E —01 0.10029E —01
—0.12353E—03 0.5580SE—02 —0.27379E-01 0.10056E —01
—0.63553E—01 0.56900E — 02 —0.16650E — 01 0.10143E—01
0.30585E —~01 0.59968E — 02 0.16144E —01 0.10417E—-01
0.28463E —01 0.68557E — 02 —0.71530E - 02 0.11285E—01
1923 0.12628E + 00 0.92610E—02 0.10344E + 00 0.14032E —01
0.27423E+00 0.15996E 01 0.27320E + 00 0.22729E-01
0.44914E + 00 0.34855E—01 0.46822E + 00 0.50258E — 01
0.49062E — 01 0.25527E—01
0.81298E —01 0.21350E —-01
0.10192E +00 0.20286E —01
1922 0.72849E - 01 0.20015E-01
0.61082E —01 0.19947E—01
0.27987E—-01 0.19933E-01
—0.36545E —-01 0.19943E—-01
—0.26214E - 01 0.19998E — 01 0.13397E—-01 0.50322E—01
0.55866E — 02 0.20217E -0t 0.23228E—-01 0.41713E-01
—0.47027E -0l 0.21079E—-01 —0.56428E — 01 0.40855E —01
0.69991E —01 0.24465E—01 0.58425E —01 0.45566E — 01
1923 0.25782E+00 0.37753E—01 0.25225E +00 0.67808E —01

0.48235E 4+ 00 0.89916E — 01 0.49226E + 00 0.16728E—00
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Table 3
Sensitivity check on P(t,, t,).

P(ty, to) a o oy a, o, G,
[0 0 1.3591 0.00756  —0.2891 0.2897 0.06741 0.15600
0 0 (+£0.5367)  (+0.00929) (£0.1390) (£0.1275)  (+0.00657) (+0.01597)
[01 0 1.3702 0.00755  —0.2865 0.3162 0.0674 0.1559
0 0.1 (+0.5388)  (+0.00927) (+0.1394)  (+0.1353)  (+0.00655) (+0.01594)
(10 © 1.3740 0.00755  —0.2855 0.3284 0.0674 0.1558
0 10 (+£0.5399)  (+0.00927) (+0.1396) (+0.1422)  (+£0.00656) (+0.0159)
100 0 1.3746 0.00755  —0.2853 0.3304 0.06740 0.1558
0 100| (£05408) (£0.00925 (+0.1394) (+0.1431) (+0.00653) (£0.0159)

*Asymptotic estimates of standard errors are in parentheses.

stochastic specification for the evolution of ¢, [i.e., (2.33)] and the increasing
value of the o, estimates."?

Table 3 presents the results of a sensitivity check. Referring back to the
description of the estimation algorithm, it is clear that the values of all state
variables estimates and variances [see (3.6)+3.12)] depend to an extent on
the assumed prior. In turn, from the manner in which the loss function (3.13)
is constructed, the influence of the assumed prior may carry through all the
parameter estimates. If the sensitivity to the prior is high, then all our
estimates must be viewed as highly conditional. Furthermore, this potential
problem would be expected to be great for short duration bubbles, i.c., when
T—t, is small, since then the solution to the difference equations for %(t,1)
and P(t,t) will be most influenced by their initial conditions. Therefore, a
‘worse case’ situation was studied: estimation of the January 1923—June 1923
bubble. Four different prior distributions were considered, ranging from a
certain prior centered on £(tg,f,)=0 to one approximating a diffuse prior
centered on the same state value. As can be seen from the table, the only
perceptible variations in the estimated parameters are found in a and o,. The
total percent change in a amount to about 1.19{, while that for o, is about
149,. At the same time, the range in P(ty,t,) is over several orders of
magnitude. Further increases in the diagonal of P(t,,t,) produced negligible

3In the stochastic model for the ¢, process, (2.12), it is possible to have a significant ¢, for
some t>1t, while ¢, is insignificant for t=1t, because of the presence of »(t). This is not the case,
of course, in a deterministic model for ¢,, as in (2.12) when the n(t) term is removed; in this
instance a significant ¢, for some t>t, must be accompanied by a statistically significant
estimate of ¢, at t=t,.
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variations in the parameter estimates. Sensitivity to the assumed prior does
not appear to be a problem.

Fig. 1 depicts the trajectories of ¢, produced by application of the
smoothing algorithm to the model with the parameters given in table 1.
Table 2 presents the ¢, estimates plotted in this figure, together with the
corresponding estimated error variances.

The presence of significant ¢, estimates in the stochastic case, prompted a
further estimation of the model under a restriction corresponding to a

IUL LU USUG Ui [BSLvEN 810 U1w) SRV LV ) AUV VRTINS PRARRAAE

deterministic evolution for the ¢’s. More specifically, the model was re-

0.5 +
a
X
0 Bubble beginning in Jan., 1919
0.4 X Bubble beginning in Oct. 1919
A Bubble beginning in Jul, 1920
@ Bubble beginning in Jun. 1921
¥ Bubble beginning in Jun. 1922
+ Bubble beginning in Jan. 1923
0.3 -
o
¥
0.2 +
0.1 4 v [=]
vo
o
° °oox glgv +
0 X ELEE ﬂ‘ ﬁi‘ g 2
0.0 oo & ‘%——8 2 o
: L BRERN 1 1
b T add Sk Qg g
1919 1920 1921 1922 5 1923
¥
1 -

Fig. 1. Smoothed estimates for ¢, (stochastic).
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Table 5

Smoothed estimates for ¢, and its error variance (deterministic case).

‘Bubble’ dates ¢, var(c, ) cy var (cy)
1/19-6/23 0204x 1078 0.790x 107 '® 0.3816 0.0277

10/19-6/23 0.123x 1077 0273x107'® 0.3903 0.0278
7/20-6/23 0916x 1077  0.146x 107'* 0.4006 0.0279
6/21-6/23 0.164x107° 0438x 10712 04170 0.0284
6/22-6/23 0991x107* 0.147x107% 04453 0.0297
1/23-6/23 0.349x107% 0.171x107° 04714 0.0312

estimated with g, constrained to zero. If large estimates for ¢, led to
insignificance of the ¢,’s, as was the case for the last two bubbles, then
restriction of ¢, to zero should produce significant ¢, in all instances.

Tables 4 and 5 and fig. 2 summarize the results of this re-estimation. As in
the previous estimation using the second-order money growth rate model,
(3.5), convergence of the iterative estimation procedure was achieved in each
instance. In addition, all residual series passed their whiteness tests.
Parameter estimates are given in table 4 and reveal an interesting variation
in the estimates for a, «;, and ¢,. Table 5 presents the smoothed estimates for
the terminal and initial values of ¢s and its estimation error variance.}* In
each case the ¢/s are significant under the usual normal distribution
assumption.

5. Conclusions

In summary, our empirical evidence strongly suggests that for this model it
is impossible to maintain the common assumption that rational expectations
are always convergent. This conclusion is most disturbing in large part
because it means that the actual price at each t may be indeterminate
without some additional assumption to determine the ¢,’s. One solution to
this difficulty having considerable intuitive appeal to many economists
involves a slow price adjustment mechanism which might determine the
initial condition by p*(0,0)=p(0), where p(0) is historically given. However,
the issue of stochastic determinacy must be left as unresolved for now.

"*Under the restriction of 6,=0, the smoothed estimates of ¢, and P,,(z, T) become mere
backward extrapolations of X,(7, T) and P,,(T,T). Thus, the smoothed estimate of ¢, (t<T) is
obtained from X,(t, T)=(1+1/a)'  "%,(T, T) while the smoothed estimation error variance is
obtained from P, (t, T)=(1+1/a)** P, (T, T). See Anderson and Moore (1979, pp. 187-190)
or Jazwinski (1970, pp. 215-218) for details.
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0.59

0 Bubble beginning in Jan, 1919

0.4 4 X Bubble beginning in Oct. 1919 :
A Bubble beginning in Jul. 1920 é
I Bubble beginning in Jun, 1921
¥ Bubble beginning in Jun. 1922
+ Bubble beginning in Jan. 1923
0.31
:

1919 1920 1921 1922 1923

Fig. 2. Smoothed estimates for ¢, (deterministic).

It is important to recognize that the issues we have raised in this paper are
not restricted to the simple monetary model of inflation studied here. The
fact that identical conceptual issues arise in more complex rational
expectations models of the Lucas—Sargent type is evident from the analysis of
Burmeister (1980, 1982) and Burmeister, Flood and Turnovsky (1981).

Our preliminary work has left us with several unanswered questions. One
should investigate whether or not the assumption of known and constant
parameters is justified, and it is important to test alternative specifications for
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the money supply function which include, for example, the variable p*(t + 1, 1).
Likewise one might try alternative specifications for the stochastic ¢,
process.

Our primary conclusion is that estimation techniques which impose
restrictions implied by the assumption of convergent expectations, and which
therefore are conditional upon this convergent expectations assumption, are
suspect without additional verification of the underlying stability hypothesis.
We have demonstrated the feasibility of an alternative estimation
methodology which does not preclude the possibility that rationally formed
expectations are unstable. We have shown how to test an important
hypothesis and to obtain parameter estimates which are not conditional
upon a perhaps invalid stability assumption.
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