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The assumption that rational expectations always lie on a convergent path is subject to an 
empirical test using the German hyperinflation data. The estimation technique employs a 
Kalman filtering algorithm. After presenting a brief background for the convergent expectations 
problem and a derivation of the various model specifications, a generalized expectations model 
and its attendant Kalman filtering estimation technique are discussed. Additional estimation 
details and empirical results a;e then presented. Based on an assumption of normally distributed 
errors, the null hypothesis of convergent paths is rejected in all situations involving a 
deterministic specification of the evolution of the unobserved parameter which characterizes the 
convergent path. The same null hypothesis is rejected in four of the six cases corresponding to a 
stochastic specification of the evolution of the unobserved parameter which characterizes the 
convergent path. A discussion of these findings, their economic significance, and suggestions for 
further research concludes the paper. 

1. Introduction 

Elsewhere Burmeister (1980, 1982) has summarized the conceptual 
problems which arise in rational expectations modelling due to the common 
assumption that rationally formed expectations always lie on convergent 
paths. When this assumption is not made - and sometimes even when it is 
- the model is not determinant in the sense that there exist many stochastic 
paths for the actual variables, all of which are consistent both with 
equilibrium in every time period and with the rational expectations 

hypothesis. Accordingly, since the postulate of convergent expectations 
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carries with it important economic implications, and because the postulate is 
testable, a careful empirical investigation is merited. 

A general framework within which this stability issue can be analyzed 
empirically has been developed by Wall (1980). A brief background for the 
convergent expectations question is provided in section 2, along with a 
derivation of the various model specifications we shall investigate. In section 
3 we turn to the generalized expectation model and discuss how it is applied 
to obtain econometric estimates for data from the German hyperinflation. 
Additional details regarding estimation are presented in section 4 along with 
the empirical results. 

2. A brief background and derivation of the basic model 

The common assumption that rationally formed expectations always 
converge is crucial for at least three reasons. First, in many models this 
assumption is needed to determine a unique monetary equilibrium at each 
instant; without this convergence assumption, the future path of the economy 
modeled might be indeterminate, even without uncertainty. Second, the 
assumption of convergent expectations is commonly used to provide cross- 
equation restrictions which facilitate identification and econometric 
estimation; thus, most econometric estimates of rational expectations models 
are conditional upon this assumption. Third, if markets are not always in 
equilibrium, then there exist many cases in which the assumption of 
convergent expectations is untenable because it implies a contradiction.“’ 

‘See Burmeister, Flood and Turnovsky (1979). Burmeister (1980, 1982) provides a survey of 
some conceptual issues in rational expectations modelling, including the question of convergent 
expectations. Burmeister, Flood and Garber (1983) have shown that there is only one type of 
indeterminacy in rational expectation models; in the model considered here, there is 
indeterminacy whenever expectations are not convergent because there exist an infinity of 
equilibrium rational expectations paths with divergent expectations. 

‘The fundamental problem of non-convergent price expectations which in turn may cause the 
problem of divergent actual prices, has been recognized for over twenty years. Writing in 1957, 
Samuelson discussed the issue of non-convergent paths: 

So much for the avoidable difficulties introduced by infinite time. Now to return to the 
intrinsic difficulty. I shall call it the ‘tulip-mania phenomenon.’ Let the market maximize 
over any finite time, adding in at the end into the thing to be maximized a value for the 
terminal amount of grain left. At what level should this terminal grain be valued? We could 
extend the period in order to find out how much it is really worth in the remaining time 
left; but this obviously leads us back into our infinite regression, since there is always time 
left beyond any extended time. We are back into maximizing over infinite time. 

But suppose we do what the market itself does in evaluating any stock Q(t) at any given 
date; suppose we simply evaluate it at the then ruling market price P,(t). Then we 
immediately run into the paradox that any speculative bidding up of prices at a rate equal 
to carrying costs can last foreoer. This is precisely what happens in a tulip mania or new- 
era bull stock market. The market literally lives on its own dreams, and each individual at 
every moment of time is perfectly rational to be doing what he is doing. [Samuelson (1957, 
pp. 215p216)]. 
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In order to make the above ideas concrete, we shall base our discussion on 
the following simple stochastic monetary model: 

md(t)-p(t)=b-a[p*(t+l,t)--*(t,t)], a > 0, (2.1 a) 

p*(t + 1, t)= E,p(t + l), (2.lb) 

m(t)=a,+cr,m(t- l)+s(t), (2.1 c) 

(2.1 d) 

where 

PM =logarithm of the price level at time t; 

E&t + h) =conditional expectation of p(t+h), h=O, 1,. ., formed at time 
t based upon all the information available at time t, which 
is assumed to be l(t)= {a, b, a,, cc,; p(t - l),p(t-2), . .; m(t- l), 

m(t-2),...j; 

m(t) =logarithm of the nominal stock of money at time t; 

m*(t) =logarithm of the demand for the nominal stock of money at time 

C 

s(t) = serially uncorrelated stochastic disturbance in the money supply 
over the period (t - 1, t) with E[s(t) ( I(t)] = 0; 

At) = serially uncorrelated stochastic disturbance in the price 
adjustment equation over the period (t - 1, t) with E[p(t) 1 I(t)] = 0; 

a =a positive constant related to elasticity of the demand for real 
balances with respect to the expected rate of inflation; 

b =a constant reflecting other variables influencing the demand for 
money which are held constant; 

% @I =parameters of the money supply equation. 

The system described by these four equations can be viewed as a simple 
extension of the modeis used by Sargent and Wallace (1973) and Black 
(1974) which now include stochastic disturbances in the money supply. Eq. 
(2.la) follows these previous authors in specifying the demand for real money 
balances to be a function of the anticipated rate of inflation over the period 
(t, t+ 1). These expectations are formed rationally in the sense of Muth 
(1961), and accordingly the expected price level is specified to equal the 
conditional expectations of actual prices, as described by (2.lb). Eq. (2.1~) 
determines the evolution of the stochastic money supply. Finally, eq. (2.ld) 
describes stochastic equilibrium in the money market. The stochastic 
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disturbances, c(t) and p(t), are assumed to be sequentially independent with 
zero means.3 

The model reduces to 

and 

4) -PM = b - aCP*(t + 1, t) -P*k a + &), 

m(t) = cI() + CC1 m(t - 1) + E(t). 

(2.2) 

(2.3) 

Assuming that economic agents know the parameters a, b, cq,, and CI~ with 
certainty, taking rational expectations of (2.2) and (2.3) at any time t +hz t, 
yields 

and 

m*(t+h, t)-p*(t+h, t)=b-a[p*(t+h+ 1, t)-p*(t+h, t)], (2.2’) 

m*(t+h,t)=ao+a,m*(t+h-l,t), 

where h=O, 1,2 ,... . 

(2.3’) 

The solution to the difference eq. (2.3’) with initial condition m*(t - 1, r) 
= m(t - 1) is 

+m(t-1) a;+l---, 
3 

@O 

c!1- 1 
h=0,1,2 ,... . (2.4) 

Substitution of (2.4) into (2.2’) gives 

p*(t+h+l,f)=$+ 1,; p*(t+h,t) 
( ) 

1 -_ 
a i[ 

&++l+:+l-~}. 

3We assume that the joint process, E(t), defined by 

s(t) = [s(t), P(t)]‘> 

constitutes a zero mean, sequentially independent vector stochastic disturbance. Specifically, 

&s(t) = 0, (4 
E,{E(t)E’(T)} =6 (b) 

for all T # t, and 

E{E(t)&‘(T)} = R < co, (4 
for t=5. 
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or 

p*(t+h+ 1, t)= 
bee, -b-t@, 

a(cQ- 1) 

1 
-; 

[ 
&+m(t-1) cC:+r, h=0,1,2 )... . 

1 I 
(2.5) 

Since (1 + l/a)> 1 as the parameter a is positive, the only possibility for 
convergent price expectations arises from the ‘forward-looking’ solution to 

(2.5), 

p*(t + h, t) = 
-a,+b-bcr, 

a, - 1 

+(I +W” m(t_l)+ (2.6) 
U 

Accordingly, the initial condition consistent with convergent expectations is 

uniquely given by setting h =0 in (2.6); assuming that - 1 <(a,/(1 + l/a)) < 
+ 1, this yields the special initial condition 

P*(t, t) = 
-cl,+b-bet, 

+ 
Ml 

a,-1 1 +a-ucr, 
m(t-I)+* . 

1 1 (2.7) 

The crucial economic significance of (2.7) - which itself was derived by 
imposing the assumption that price expectations are convergent - stems 

from the fact that it determines actual prices which are then given by 

P(t) = P*k t) -cl(t) + 4th (2.8) 

where p*(t, t) is determined from (2.7). To derive (2.8), subtract (2.2’) with 
h=O from (2.2) and subtract (2.3’) with h=O from (2.3), giving 

and 

Cm(t) -&)I - Cm*@, 4 -p*@, 91 = At), 

m(t) - m*(t, t) = E(t). 

Substituting the latter into the former yields (2.8). 
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If alternatively one assumes that 

p(t)=710+711m(t)+71,m(t- 1)+7L&), 

for some non-zero no, rcl, IQ. and x3, and then imposes rational expectations, 
the solution obtained is identical to that given by (2.7) and (2.8). This latter 
procedure (sometimes called the ‘undetermined coefficient’ algorithm) may be 
equioalent, as it is in this example, to assuming convergent expectations4 

However, (2.6) is not the unique ‘forward-looking’ solution to (2.5) if the 
assumption of convergent expectations is dropped. There are an infinity of 
divergent ‘forward-looking’ rational expectations solutions obtained by 
adding the unstable term 

c,( 1 + l/a)” (2.9) 

to (2.6), where c, is an arbitrary constant. This gives 

p*p, t) = c, + 
-&)+b-bCX, 

cr,-1 
+ 

u1 

1 +a--a@, [ 
rn(l-l)+S 

I 
(2.10) 

1 

In this model the assumption that expectations are always convergent is 
equivalent to imposing c, = 0 for all t. 

Our approach will be to treat c, as an unobserved variable which is 
estimated jointly with the other unobserved variables - p*(t, t), ~*(t+ 1, t), 
and m*(t, t) - and with the other parameters of the model. The details of 
this technique are spelled out in section 3 and 4 below. 

The c,)s are restricted by the rational expectations hypothesis to satisfy 

ECct., (WI =ct(l + l/4”, (2.11) 

where the information set I(t) is now expanded to include ct, c,_ 1, c,_ 2,. . .5 
A stochastic process consistent with the restriction (2.9) is 

(2.12) 

where E[q(t + h) 1 I(t)] = 0 for h = 0, 1,2,. . . .6 Thus the actual ct+ 1 differs from 

‘See Burmeister (1982) for a complete discussion of this issue. 
‘This restriction follows from the fact that rationality necessitates 

ECp*(t+h+l,t+h)lI(t)]=p*(t+h+l,t), 

i.e.: ‘What I now think I will expect in the future is the same as what I do expect now.’ 

‘For estimation purposes we shall require the stronger assumption that the joint proce\\ 
[cI(t),pl(t), q(t)]’ is a zero mean, sequentially independent vector stochastic disturbance, where 
&,(t)=&(t)--E(t-1) and pI(t)=p(t)-p(t-1); see footnote 3. We furthermore assume that 
E[z,(t)s(t)]=E[flI(t)~(t)]=O but cl(t) and p,(t) may be correlated. 
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the expectation E[c,+~ /I(t)] by th e random error term y(t) which we assume 

has finite variance. 
Our complete model consists of eqs. (2.3), (2.8) and (2.12). 

Derivation in difference form 

Estimation difficulties were encountered which were circumvented by 
respecifying the model in first differences. Thus we define the 
inflation rate 

expected 

7c*(t+h,t+h)-_P*(t+h+l,t+h)-p*(t+h,1+h), 

and the corresponding actual inflation rate 

7L(t+h)-p(t+h+ 1)-p(t+h), h=O,1,2 )... . 

Likewise, the expected and actual money growth rates are defined as 

g*(t+h,t+h)-m*(t+h+l,t+h)-m*(t+h,t+h), 

and 

(2.13) 

(2.14) 

(2.15) 

g(t+h)-m(t+h+l)-m(t+h), h=O, 1,2 ,..., 

respectively. Moreover, for all h = 0, 1,2,. . we have that 

(2.16) 

and 

E[n*(t + h, t + h) ) I(t)] = Ir*(t + h, t), (2.17) 

E[g*(t + h, t + h) 1 I(t)] =g*(t+ h, t). (2.18) 

From eq. (2.2), 

g(t+h)-7t(t+h)=-a[n*(t+h+l,t+h+l)-n*(t+h,t+h)] 

+p(t+h+ l)-p(t+h), 

for all h = 0, 1,2,. . ., while (2.3) implies that 

(2.19) 

g(t+h)=a,g(t+h-l)+E(t+h+l)-E(t+h), h=O,1,2 ,... . (2.20) 
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We make the following alternative assumption about the stochastic processes 
governing (2.2) and (2.3); it implies that s(t) and ,u(t) are random walks: 

For all h=O, 1,2 ,..., 

E[&+h+l)-&+h))I(t)]=O, (2.21) 

and 

E[.s(t+h+ 1)-e(t+h) 1 I(t)] =O, (2.22) 

where 

I(t)={a&+X,; I$- l), p(t-2),. . .; m(t- l),m(t-2),. . .; CtrC,_l,. . .>. 

In view of assumption (2.21), taking conditional expectations of (2.19) at 
time t, using the information set I(t) known at that time, yields 

g*(t + h, t) - n*(t + h, t) = - a[n*(t + h + 1, t) - 7c*(t + h, t)] + 0, (2.23) 

h=0,1,2 )... 

Analogously, (2.20) and (2.22) imply that 

g*(t+h,t)=cl,g*(t+h-l,t)+O, h=0,1,2 )... . (2.24) 

The solution to the difference eq. (2.24) is 

g*(t + h, t) = a;+ ‘g*(t - 1, t), h=0,1,2 ,..., (2.25) 

where the initial condition is calculated as 

g*(t-l,t)=ECg(t-l))I(t)]=cl,g(t-2). (2.26) 

Then, substituting (2.25) and (2.26) in (2.23) results in the difference equation 

(2.27) 

The ‘forward-looking’ stable solution to (2.27), which is analogous to (2.6), 
is 

n*(t+h,t)=(l!a)(l+l/a)“alg(t-2)e=~+1 & ’ [ 1 

h+2 

= 1 +:_,,, &-32 (2.28) 
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provided - 1~ la,/(l + l/a)\ < + 1 as we shall assume. Thus setting h=O and 

h= 1 in (2.28) we may calculate 

and 

7c*p, t) = 
x: 

1 +a--act, go - 212 (2.29) 

n*(t+l,t)=l+;Taz g(t - 2). 
1 

(2.30) 

It is easily verified that (2.29) and (2.30) satisfy (2.27) with h=O; they 
represent rationally formed expected inflation rates which are consistent with 
the assumption of convergent expectations. 

In general, however, the solutions to (2.27) which are consistent with 
‘forward-looking’ rational expectations are of the form 

hi2 

?r*(r+h,t)=c,(l+lia)h+l+~_ua g(t-21, h=O,1,2 )...) (2.3 1) 
1 

where the c,‘s satisfy (2.12). Note that (2.31) and (2.28) are equivalent if and 
only if c,=O in (2.31). However, for non-zero c,, (2.31) is not convergent since 

lim,, p) (1+ l/a)“= + co. In view of (2.12), we see that 

7cn*(t, t) = c, + 
4 

1 +a-ucc, 
g(t - 2), (2.32) 

and 

7-c*(t+1,t+1)=Ct+l+ 
@: 

1 +a--a@, 
& - 1). (2.33) 

Substituting (2.32) and (2.33) into (2.19) with h=O gives 

g(w)=-u(c,+I-c,)-I+~~u~I k(t-1)-g(t-2)] 

+ cl@ + 1) - PL(G (2.34) 

We now take conditional expectations of (2.34), using the fact that 
E[c,+ 1 (I(t)] =c,(l + l/u) from assumption (2.12), 

g*(t, t)-7c*(t, t)= -c,- 
UC!: 

1 +a-ua, 
M--l)-_g(t-m (2.35) 
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Subtracting (2.34) from (2.35) yields 

n(t)-n*(t)= ac,, 1 -Cl +a)c,+E(t+ l)-I--(t+ l)+p(t), (2.36) 

since g(t)-g*(t, t)=~(t+ l)-&(t). The first two terms on the right-hand side of 
(2.36) sum to aq(t), and therefore 

E[n(t)-z*(t, t) (I(t)] =O, 

confirming that expectations have been formed rationally. 
As noted below, we found it necessary to consider a second-order money 

growth rate process. Thus following Flood and Garber (1980), we also have 
estimated another version of the model for which the model supply process is 
respecified as 

g(t)=cc,+(l +~~)g(t-l)--a,g(t-2)+o(t), (2.37) 

where w(t) is a white noise process. Eq. (2.37) implies 

g*(t+~,~)=g(l-2)+~(l-a:+~)Cg(t2)-g(t-3)1 
1 

+*(h+2)+*(u:-“-l). 
1 

(2.38) 

These expectations for the rate of growth of the money supply then yield the 
following specification for the evolution of the inflation expectations:’ 

at - l- 
+1-Cc, ( 

N: 
1 +a-act, 1 

‘Eq. (2.39) is derived from 

x rg(t-l)-2g(t-2)+g(t-3)]. (2.39) 

x*(t+h;t)c,(l+l/a)h+(l/a)(l+l/a)h f (1+1/a)-‘g*(t+O-1,t) 
o=h+ 1 

=~,(l+l/a)~+g(t-2)+2 (h+2+a) 1 %a1 +------_- i 
IIt, MI h-i1 

(l-a,)2 1+a--act, 
l-a,_ 1 [ a1 l-U, 1 +a-act, 

1 IMt-2)-&d-3)1, 1 
which is the general solution to the difference equation 

n*(t+h+l,t)=(l+l/a)rr*(t+h,t)-(l/a)g*(t+h,t), 

i.e.. it is the solution to (2.23). 
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Finally, the actual rate of inflation is given by 

71(t) = z*(t, t) + a@) + o(t) - p(t + 1) + p(t), (2.40) 

with E[rc(t) ( I(t)] = rc*(t, t), again confirming rational expectations. 

3. A state space model of expectation formation 

The empirical investigation of the convergent expectations question can be 
approached in a number of ways. Perhaps the most attractive from a 
traditional econometric viewpoint is to solve the system analytically and 
substitute these solutions into the behavioural system (2.2)-(2.3). The result is 
a system of equations involving interequation restrictions that are amenable, 
at least in principle, to standard regression techniques. While such an 
approach eliminates the bothersome appearance of unobserved variables like 
~*(t + h, t) and c,, it may not be the least complicated since it necessitates the 
formation of convolutions on m(t- 1) and p(t). 

An alternative approach, and the one taken here, is to retain the explicit 
reference to the unobserved variables. To wit, a state space form 
representation is employed wherein the unobserved variables become state 
variables. Drawing upon a well-developed theory from control engineering, it 
is then possible to obtain simultaneously estimates of both the model 
parameters and the unobserved expectations. This permits a much easier test 
of certain hypotheses than would otherwise be the case. Since such an 
approach is relatively unfamiliar, we first present the state space 
interpretation of models introduced in section 2, and describe its estimation. 

3.1. The state space model 

Let x(t) be an n-vector of state variables, u(t) an m-vector of ‘inputs’, and 
y(t) an l-vector of ‘outputs’. Then a state space,model relating these variables 
to one another is given by 

x(t + 1) = h(t) + Gu(t) + rq(t), (3.1) 

y(t) = Hx(t) + h(t) + E(t). (3.4 

Both q(t) and E(t) denote vectors of random variables such that 

and 

W(t)1 =O, E {E(t)} = 0, 

E{&), V’(S))= QL E{+), 0)) =RL 
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F, G, r, H, D, Q, and R are constant real matrices of dimensions compatible 
with the vector-matrix operations above, and 6,, denotes the Kronecker delta 
function. The 1 x 1 variance-covariance matrix R is always assumed positive 
definite, while the n x n variance-covariance matrix Q need be only non- 

negative definite (i.e., positive semi-definitive). 
In the context of section 2, three state space representations of the rational 

expectations hypothesis can be obtained, depending upon the use of p(t) and 
m(t), or z(t) and g(t). In the first instance, a state space model arises once we 
make the following definitions: 

x’(t) = cc,1 
1 

u’(t) = Cm(t), p(t), m@ - 1),11 

tl’(t) = CrWl 

f(t) = Cm(t), p(t)1 

w = [4t), g(t) - At)1 J 
The coefficient matrices appearing in (3.1) are then 

F = [ 1 + l/a], G=[O 0 0 01, r=Cll, 

while those appearing in (3.2) become 

(3.3) 

H= 

00 a, 

i 

a0 

D=o 0 1 +;:aa, 
1 

. (a1 _ 1) [ b(I-a+ao+ 1 +:“h,, 11 
There is only a single state equation since imposing rational expectations 
produces a closed form expression for p*(t, t). Thus, given (2.10) and m(t - 1) 
one can compute p*(t, t)-c, exactly. Price expectations under the rational 
expectations hypothesis only become ‘unobserved variables’ insofar as their c, 
component is concerned, and thus only c, need be a state variable. The first 
equation of (3.2) is merely (2.3), while the second is a combination of (2.8) 
and (2.10). 

A second state space model representation is required to describe the 
differenced version of section 2. This is obtained by making the following 
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definitions once the IX,, term has been reintroduced in (2.20), 

x’(t) = cc,, c, + 1 - 4 

267 

u’(t) = k(t), n(t), go - 11, go - 2),11 I 

tl’@) = L-r@), r@ + 111 (3.4) 

J+(t) = k(t), Ml 

d(t) = [i?(t + 1) - E(t), s(t + 1) -s(t) - p(t + 1) + l*(t)] I 

The coefficient matrices of the state equations for this version of the model 

become 

[ 

1+1/a 0 

F= (l/a)(l+l/a) 0 ' G= 1 I : x : : kJ r=[lo ;I; 
while those of the output equation, (3.2) become 

0 0 

‘I I 

00 a, 0 NO 

H= 
0 a' 

D= (1 +ab, --cc2 

O O l+a-acr, l+a-act, 
BO 

1. 

The first state equation is just (2.12). The second represents the evolution of 
c,+ 1 -c,, which can be obtained by noting that 

C t+2-Cr+1- -(ll&+l+v(t+l) 

=(l/a)(l+ l/a)c,+(l/a)vl(t)+rl(t+ 1). 

The two equations in (3.2) are derived from (2.20) and (2.34), respectively. 
As described in the next section, it was found necessary to respecify a 

second-order money growth rate process in place of (2.20). Following Flood 
and Garber (1980), g(t) was assumed to obey a first-order autoregression in 
its second differences, i.e., 

or 

k(t) -s(t - 111 = @o + a, t-go - 1) -g(t - 211 + ~W, 

g(t) = CIo + (1 + a1)g(t - 1) - @.,g(t - 2) + o(t). 
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Here o(t), as usual, is assumed to be a zero mean white noise process. With 
g(t) obeying the above, a third state space model representation is obtained 
by employing the following definitions: 

x’(t) = cc,, cr + 1 - 4 

u’(r) = k(t), r+), g(r - l), g(r - 2), g(r - 3), 11 

rl’(t) = C?(t)> Y@ - 1)l 

Jw = cm WI 

4t) = C40, w(t) - cl@ + 1) + P(t)1 1. 

(3.5) 

The coefficient matrices of the state space representation for this version of 
the model become 

F= 

while those of the output equation, (3.2), become 

A= l+&_-_. 
[ 

4 1 I 1 l-a, l+a-acr, ’ 
B= l+S_-_. 

[ 

201: 1 1 1 l-a, l+a--aa, ’ 
c= _?L-. 

[ 
4 1 

l-a, 1 l-a, l+u-ua, . 
The state equations appear exactly as in the model associated with (3.4). The 
only differences appear in the output equations. 

Conversion of the model into (3.1)-(3.2) is desirable primarily to permit the 
use of Kalman filtering. Estimates of the elements of x(t) can be directly 
obtained, and these estimates are minimum-mean-square error. Furthermore, 
the Kalman filter can be employed to produce innovations sequences 
(residuals) which may be used to iteratively compute estimates of the model 
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parameters along with estimates of x(t). Moreover, both state and parameters 
estimation can be effected in the absence of stability and stationarity 
assumptions. This makes the state space representation and its attendant 
estimation via Kalman filtering particularly well suited to address the issues 
raised in section 1, and is the prime reason for representing the model in the 
form (3.1)-(3.2). In estimation algorithm is briefly described below. 

3.2. State estimation 

For expositional convenience first consider the problem of estimating x(t) 

given the parameters of F, G, r, H, and D, together with the first two 
moments of y(t) and u(t). If i(t,z) denotes the minimum-mean-square error 
estimate of x(t) given the model and all observed data up through time z, 

Y’= Mlbo)~~~ .&)}, 

U’= (u(l), u(2), . . ., u(z)}, 

then i(t, t) is produced by the following recursive computation: 

i(t + 1, t) = F.f(t, t) + Gu(t), (34 

P(t + 1, t) = FP(y, t)F’ + rQl-‘, (3.7) 

B(t+ 1, t)=HP(t+ l,t)H’+ R, (3.8) 

E^(t + 1, t) =y(t + 1) - Hf(t + 1, t) - Du(t + l), (3.9) 

K(t+l)=P(t+l,t)H’B-‘(t+l,t), (3.10) 

_?(t+l,t+l)=f(t+l,t)+K(t+l)E^(t+l,t), (3.11) 

P(t+l,t+l)=[Z-K(t+l)H]P(t+l,t), (3.12) 

for t, st_l7: P(t + 1, t) is the variance-covariance matrix of the estimation 
matrix error in i(t + 1, t), i.e., 

P(t+l,t)=E{[x(t+l)--(t+l,t)][x(t+l)--(t+l,t)]’). 

B(t + 1, t) is the variance-covariance matrix of the innovation, i.e., 

B(t+l,t)=E{E^(t+l,t)E^(t+l,t)‘). 
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The initial values for a(t, t) and P(t, t) are assumed known and given by 

i(t,, to) =a(O) = E{x(t,) g iven all information at time to}, 

P(b, k,) = P(O) = E{ C+J - WI Cx@o) - WI'} 

Thus P(t,,) is the variance-covariance matrix of the error in estimating x(t) 
given all observations up through time (z 2 t). The vector c(t + 1, t) represents 
the innovations process and is analogous to the model residuals used in 
econometric estimation. Eqs. (3.6)-(3.12) constitute the Kalman filter. 

More efficient estimates of the states can be obtained by utilizing all the 
sample information available; i.e., i(t, T). This is referred to as the smoothed 
estimate. It is derived from the filtered estimate, i(t, t), by means of a reverse 
‘sweep’ over the data from T back to t + 1. Broadly speaking, computation is 
as follows: the recursive Kalman filter is employed in reverse time ‘beginning’ 
at time T using a diffuse ‘prior’ for i(T, T + l), i.e., P(T, T+ 1) = cc. For any 
time t in the closed interval [0, T], this reverse time filter produces an 
estimate, -i-(t, t + l), alang with its corresponding variance-covariance matrix, 

P(t, t + 1). This represents our best estimate of x(t) using data only over the 
interval [t + 1, T]. Combining this with our forward time estimate, i(t, t), 
using only data over the interval [0, t], gives us the desired result, -i-(t, T). The 
method of combination follows from a classical result in probability and 
statistics; namely, the optimal combination of two independent estimates 
a(t, t) [with precision matrix P-‘(t, t)] and .iZ(t, tt 1) [with precision matrix 
Pml(t,t+l)] is 

i(t, T)=P(t, T)[P-‘(t,r)f(t, t)+P-‘(t, t+ l)a(t, t+ l)], 

with corresponding precision matrix 

P-‘(t,T)=P-‘(t,t)+P-‘(t,t+l). 

Details of the smoothing algorithm employed below are given in Cooley, 

Rosenberg and Wall (1977). Thus, once filtered estimates are obtained, they 
can be revised by the smoothing algorithm to produce the most efficient 
estimates of ~(t).s 

3.3. Parameter estimation 

Using the Kalman filter to generate model residuals enables the formation 
of a loss function that can be used in parameter estimation. The parameters 

‘It can be shown that P(t, t)zP(t, T) for t, s t 5 7: This should be intuitively clear since, by 
definition, a(t, T) uses more information than x(t, t). See Jazwinski (1970, ch. 7) or Bryson and 
Ho (1969, ch. 13). 
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to be estimated may not only include the unknown elements of H, D, and R 
(the parameters of the behavioral equations). but more importantly those of 
F, G, r, and Q. The algorithms for estimation of the unknowns in this 
manner are called ‘prediction error’ methods and, like the Kalman filter, are 

thoroughly treated in the control literature [see Caines (1976), Ljung (1979) 
and Ljung and Caines (1979)]. The algorithm employed in the present study 
is outlined by the following steps: 

Step 1. Collect the unknown parameters into a vector 8 of dimension N x 1. 
Denote an initial guess at its true value by 0’ and insert this into the 
Kalman filter eqs. (3.6))(3.12). Set i=O. 

Step 2. Using the Kalman filter eqs. (3.6)-(3.12) compute the model 
innovations sequence {f(t+ 1, t); tests T- 1$ where P(t+ 1, t)=E^(t + 1, t,Oi) is 
an implicit function of 8’. 

Step 3. Form the loss function J(0”) where 

J(@) =i ‘f’ [i(tf 1, t)‘n,‘, ,!c^(t + 1, t) + In (det /1,+ r,,)], 
t0 

(3.13) 

and A+ If is some positive definite weighting matrix. 

Step 4. Compute an improved estimate of 8, denoted @+I, such that 
_I(@+ ‘) 5 J(@). Use 

8 i + 1 = @_ piM - 1 aJ(r@)/ae, 

where pi is a (scalar) step size parameter and n/lie1 is a positive definite 

N x N matrix such that in the limit (as i+~) it tends to the inverse Hessian 
of J. (See discussion,after Step 5.) 

Step 5. Check to see if )~~‘+‘-0’~~<fi, and/or 1/?J(8i”)/118(1~62. If so, stop; 
f?+’ is accepted as the ‘best’ estimate of 8. Otherwise, set 13’ to @+I, i= i+ 1, 
and return to Step 2. If it is assumed that c(t) is normally distributed for each 

t, and 4+1~, is set equal to B(t + 1, t), then approximare maximum likelihood 
estimates are obtained; see Anderson and Moore (1979). 

The iterative algorithm given above requires an initial estimate, 8’; a 
convergence criterion, ii, and/or 6,; and expressions for the components of 
the gradient vector &J(0)/%. The gradients may be computed numerically 
using simple finite first differences of J(0) or analytically using a 
straightforward application of differential calculus to (3.13). The method by 
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which pi and Mi computed depends on the particular function minimization 
algorithm employed. A Davidson-Fletcher-Powell Variable Metric algorithm 
is used here since then ML1 1s computed automatically, with aJ(0)/86 being 
the only user supplied information. Upon convergence M; ’ is the inverse 
Hessian of J(e) (i.e., the information matrix) and yields valuable information 
concerning estimated parameter standard errors, correlations (covariances), 
and indentitiability. In particular, once the algorithm converges, a simple 
scaling of M;’ produces an estimate of the parameter variance-covariance 
matrix. Not only is this estimate useful in hypothesis tests on elements of 0, 
but also in examining identifiability. Since local identifiability and asymptotic 

non-singularity of the Hessian matrix are equivalent, a nearly singular M;’ 
indicates identification problems. In practice, this is most easily tested by 
converting the parameter variance-covariance matrix to a correlation matrix 
and examining the off-diagonal elements. Interparameter correlations near 
unity, say kO.996, lead to a singular condition suggesting an over- 
parameterized specification and lack of complete identification. Moreover, a 
singular Hessian for J(B) results in non-convergence of the numerical 

optimization algorithm so that lack of convergence and lack of identification 
are highly related. These facts are extremely helpful in deciphering the 
estimation results given in section 4. 

4. Estimation details and results 

The state space model associated with the definitions in (3.3), (3.4), and 
(3.5) each contain six unknown parameters: a, LX,,, c(~, a;, and the two distinct 
elements of the symmetric 2 x 2 matrix R, CT: and r$. In order to guarantee 
that the estimates of R always be positive definite during estimation, the 
lower triangular Cholesky factorization was used to define the unknowns 
related to R; namely, R was represented as 

A likewise representation was employed for the Q matrix, i.e., 

for the 

for the 

Q = Cot,1 [a,1 

levels model, while 

Q=[;ya :J[z 2y] 

differenced models. 
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The initial state estimate, a(O), and its error variance-covariance matrix, 
P(O), constitute another live unknowns. These were not estimated but fixed at 
a specified value since, asymptotically they do not affect the results.’ Thus 
the tI vector is defined as 

Upon convergence of the iterative algorithm for 8, the Kalman filter is 
called to produce ‘filtered’ estimates a(t, t) for x(t), i.e., 

il(t, t) = E{c, 1 Y’, U’), 

for the levels models, and 

i,(t, t) = E{q ( Y’, Ut>, 

for the differences models. Finally, given 8 and a(t, t), the smoothing 
algorithm is called to produce i(t, T) which constitute our best estimates of 
the state variables given all the sample information. These are to be 
interpreted as our conditional expectation (conditioned on the observed data 
sample) of the variables employed by a representative economic agent in 
forming the rational expectations consistent with the given model. 

4.1. Estimation results 

Estimation of (3.1)-(3.2) was carried out using price data taken from 
Zahlen zur Geldentwertung in Deutschland 1914 his 1923, Reimar Hobbing, 
Berlin, 1925. Money supply figures were taken from table VII of Flood and 
Garber (1980). The same period for both price and money covered January 
1919 through June 1923. Six different bubble phenomena were considered, all 
lasting until June 1923 but beginning in different months. Beginning dates for 
the bubbles were: January 1919, October 1919, July 1920, June 1921, June 
1922, and January 1923. The third, fifth, and sixth bubbles correspond 
exactly with those treated by Flood and Garber (1980). 

Initial attempts to lit the levels model, (3.3), failed. No convergence in the 
iterative procedure was obtained due to severe negative correlation between 

‘Given a completely observable model, it can be shown that the filter is uniformly 
asymptotically stable with asymptotic solutions independent of the initial data; see Jazwinski 
(1970), Bucy and Joseph (1968), for example. 
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CI,, and a, (estimated at -0.994 after approximately sixty iterations). This 
problem was also evident in the serial correlation properties of the residuals 
in the money supply equation. For these reasons the levels model was 
abandoned in favor of the differenced version (3.4). 

Two versions of (3.4) were estimated. In the first CI~ was estimated along 
with the other model parameters, while in the second it was constrained to 
unity (reflecting the belief that the money growth rate was best modeled as a 
perfect second difference). In both cases the residuals for the money growth 
rate failed to satisfy tests for no serial correlation, significant serial 
correlation being present at lag one. Hence, this model was dismissed from 
further consideration and a slightly more elaborate money supply process 

specified. 
Estimation of the more elaborate model, (3.5), produced none of the 

problems associated with the previous cases. Convergence of the iterative 
estimation scheme was achieved in each instance and all estimated residual 
series met the serial correlation tests. Results for this case are presented in 
tables 1, 2, and 310*‘1 and in fig. 1. The first table presents the parameters 
estimates. In each of the six bubbles a significant non-zero gs is obtained. 
Moreover, a slight negative correlation between a and CJ~ is revealed. The 

second table presents the smoothed estimates for the c, trajectories and their 
associated estimation error variances. Significant c,‘s appear in the last two 
months of the sample for all bubbles except those bubbles starting in to June 

1922 and January 1923. l2 This behavior is due to a combination of the 

“All standard errors reported in table 1 require a special interpretation similar to that given 
in Flood and Garber (1980, fn. 18) because the state space representations associated with (3.3) 
and (3.4) are unstable (i.e., each has an F matrix with one eigenvalue equal to 1+ l/a which lies 
outside the unit circle), and result in a situation analogous to the ‘exploding regressor’ case in 
econometrics. Thus, we must view our data sample as one drawing from a cross-section of 
repeated hyperinflations, all with the same pre-1920 events and behavioral parameters. In this 
sense the length of the data sample is fixed at 40 observations (March 1920 through June 1923), 
while the number of repetitions, N, of this sample tends to infinity. The estimates obtained here 
then are both asymptotically consistent and normal [see Goodrich and Caines (1979)]. 

“The degrees of freedom for the g(t) equation Q statistic are obtained by interpreting this 
equation as a standard ARMA (2,0) model for g(t). For the n(t) equation the interpretation is 
not so clear since a state variable appears on the right-hand side; we no longer have an 
equivalent ARMA (p,q) model. What has been done is to assume the estimated residuals 
themselves comprise a given time series and that an ARMA (0,O) model has been lit. A Q- 
statistic test for ‘model’ adequacy t& translates into an approximate test for ‘whiteness’. 
Alternatively, both residuals could be subjected to a test of significance using as the 95% 
confidence band &2/,,& = +0.28 [see Box and Jenkins (1973, pp. 177, 178, 290)]. 

“The confidence regions are computed from the diagonal elements of the P(t, t) matrix in the 
filtered case, and P(t, T) matrix in the smoothed case. Each of these matrices implicitly depends 
on the 0 vector through the F, H, Q, and R matrices [see (3.6)-(3.12)]. Thus in computing these 
variances we are treating the parameters as known exactly, i.e., that the representative economic 
agent takes these parameter estimates as given. Incorporation of the uncertainty in 0 in 
generating both P(t,t) and P(t,T) requires solution of a nonlinear filtering problem for which 
only approximate solutions exist [see Jazwinski (1970, chs. 7 and S)]. 
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Table 2 

Smoothed estimates for c, and its error variance (stochastic case). 

Date var (2,) C, var (2,) 

- 0.96978E - 02 0.67962E -02 

-O.l4638E-01 
-0.35449E-02 

0.62814E-02 
O.l2753E-01 
0.25363E-01 
0.42444E-01 

1919 0.65732E -01 
0.74394E -01 
0.65182E-01 
0.60193E-01 
0.62803E -01 
0.71523E-01 

0.60995E - 02 
0.58531E-02 
0.57661E-02 
0.57353E-02 
0.57244E - 02 
0.57205E -02 
0.57192E-02 
0.57187E-02 
0.57185E-02 
0.57185E-02 
0.57184E-02 
0.57184E-02 

0.51461E-01 
O.l3465E-01 

-O.l4556E-01 
-0.20715E-01 
-0.20090E-01 
-O.l3201E-01 

1920 -0.85290E-02 
- 0.77643E - 02 
-O.l0285E-01 
-0.77554E-02 
- 0.68827E - 02 
- 0.49274E -02 

0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
OS7184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 

-0.73732E -02 
-0.59325E-02 
-0.25324E-02 

0.38328E-02 
O.l3562E-01 
0.25212E-02 

1921 0.42244E -01 
0,38616E-01 
0.3941OE-01 
0.39058E-01 
0.22489E -01 
0.25583E-01 

0.57184E-02 
0.57184E-02 
0.571848-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57184E-02 

0.40303E - 02 
0.55538E-01 
0.40235E-01 
0.29562E -01 
0.48818E-01 
0.68459E -01 

1922 0.79930E-01 
0.56356E-01 
0.40878E-01 
O.l3801E-01 

-0.30168E-01 
-O.l7545E-01 

0.57184E-02 
0.57184E-02 
0.57184E-02 
0.57185E-02 
0.57185E-02 
0.57187E-02 
0.57191E-02 
0.57202E - 02 
0.57235E-02 
0.57328E-02 
0.57590E - 02 
0.58332E-02 

O.l9843E-01 
0,51674E-02 

1923 O.l1964E+OO 
0.28851E+OO 
0.468OOE + 00 

0.60432E - 02 
0.66370E - 02 
0.83165E-02 
O.l3065E-01 
0.26503E-01 

O.l8349E-01 
0.28148E-01 
0.38369E - 01 

0.366OOE-01 
0.84662E -01 

-O.l2408E-01 
-O.l6966E-01 
-O.l653OE-01 
-O.l1154E-01 
-0.72770E-02 
-0.65281E-02 
-0.84264E-02 
-0.64241E-02 
-0.59086E-02 
-0.44136E-02 

-0.60923E-02 
-0.48097E-02 
-O.l9065E-02 

0.31695E-02 
O.l0986E-01 
0.20197E -01 
0.33643E-01 
0.30889E-01 
0.31698E-01 
0.31950E-01 
O.l8688E-01 
0.20876E -01 

0.33426E-01 
0.43451E-01 
0.32238E-01 
0.24695E -01 
0.36697E -01 
0.55665E -01 
0.65666E -01 
0.48586E-01 
0.38051E-01 
O.l8189E-01 

-O.l4239E-01 
- 0.24994E - 02 

0.29375E-01 
0.25994E-01 
0,12541E+00 
0.27570E + 00 
0.45073E + 00 

0.52747E -02 
0.51242E-02 
0.50705E-02 

0.50512E-02 
0.50443E-02 
0.50419E-02 
0.5041OE-02 
0.50407E - 02 
0.50406E - 02 
0.50405E -02 
0.50405E-02 
0.504058 - 02 
0.50405E - 02 
0.50405E -02 
0.50405E - 02 

0.50405E-02 
0.50405E- 02 
0.504058 - 02 
0.50405E-02 
0.50405E -02 
0.50405E-02 
0.50405E - 02 
0.504058-02 
0.50405E - 02 
0.50405E - 02 
0.50405E - 02 
0.504058 - 02 

0.50405E - 02 
0.50405E- 02 
0.50405E - 02 
0.50406E - 02 
0.50406E - 02 
0.50408E - 02 
0.50414E-02 
0.504298 - 02 
0.504738-02 
0.50595E- 02 
0.509378 -02 
0.51892E-02 

0.54563E -02 
0.62034E - 02 
0.82927E - 01 
O.l4136E-01 
0.30477E-01 
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Table 2 (continued) 

Date 

1920 

1921 

1922 

1923 

1922 

1923 

Ct var (2,) c, var (e,) 

-0S7448E-03 
-0.89755E-03 
-0.26551E-02 
-0.59627E-02 
- 0.49082E - 02 
- 0.49542E - 02 
- 0.38566E ~ 02 

0.61546E-02 
0.57464E-02 
0.56006E -02 
0.55485E - 02 
0.55299E-02 
0.55233E -02 
0.55209E-02 

-0.56433E-02 0.552OlE-02 
-0.44986E-02 0.55198E-02 
-O.l7578E-02 0.55197E-02 

0.31062E-02 0.55196E-02 
O.l0604E-02 0.55196E-02 
O.l9477E-01 0.55196E-02 
0.32412E-01 0.55196E-02 
0.297738 - 01 0.55196E-02 
0.30542E - 01 0.55196E-02 
0.30825E-01 0.55196E-02 
O.l8055E-01 0.551968-02 
0.20125E-01 0.55196E-02 

0.32150E-01 
0.41736E-01 
0.30978E-02 
0.23840E - 01 
0.35442E-01 
0.53742E-01 
0.63540E - 02 
0.47308E-01 
0.37418E-01 
O.l8588E-01 

-O.l2353E-03 
-0.63553F-01 

0.30585E-01 
0.28463E -01 
O.l2628E+00 
0.27423E +00 
0,44914E+OO 

0.55196E-02 
0.55196E-02 
0.55 196E - 02 
0.55197E-02 
0.55197E-02 
0.55200E - 02 
0.55206E -02 
0.55224E - 02 
0.55274E-02 
0.55414E-02 
0.55805E-02 _ 

0.569OOE -02 _ 

0.599688 - 02 
0.685578 - 02 _ 

0.926108-02 
O.l5996E-01 
0.34855E-01 

0.49062E - 01 
0.81298E-01 
0.10192E+OO 
0.72849E - 01 
0.61082E-01 
0.27987E-01 

-0,36545E-01 
-0,26214E-01 

0.25527E - 01 
0.21350E-01 
0.20286E - 01 
0.20015E-01 
O.l9947E-01 
O.l9933E-01 
O.l9943E-01 
O.l9998E-01 

0.55866E - 02 
-0,47027E-01 

0.69991E-01 
0.25782E + 00 
0.48235E + 00 

0.20217E-01 
0.21079E-01 
0.24465E -01 
0.37753E-01 
0.89916E-01 

O.l5446E-01 
0.25618E-01 
0.42682E - 01 
0.375398-01 
0.38207E-01 
0.38662E-01 
O.l9781E-01 
0.22281E-01 

0.38858E-01 
0.52068E -01 
0.36295E-01 
0.25795E -01 
0.41825E-01 
0.678148-01 
0.82394E - 01 
0.59642E-01 
0.46840E - 01 
O.l9865E-01 

-0.27379E-01 
O.l6650E-01 

O.l6144E-01 
0,71530E-02 
0.10344E + 00 
0.27320E + 00 
0.46822E + 00 

O.l3397E-01 

0.23228E - 01 
~0.56428E-01 
0.58425E - 01 
0.25225E + 00 
0.49226E + 00 

O.l1119E-01 
O.l0364E-01 
O.l0126E-01 
O.l0051E-01 
O.l0027E-01 
O.l0020E-01 
O.l0017E-01 
O.l0017E-01 

O.l0016E- 10 
O.l0016E-01 
O.l0016E-01 
O.l0016E-01 
O.l0016E-01 
O.l0016E-01 
O.l0017E-01 
O.lOOlSE-01 
O.l0020E-01 
O.l0029E-01 
O.l0056E-01 
O.l0143E-01 

O.l0417E-01 
O.l1285E-01 
O.l4032E-01 
0.22729E - 01 
0.50258E - 01 

0.50322E - 01 

0.41713E-01 
0.40855E-01 
0.45566E-01 
0.67808E-01 
O.l6728E-00 
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Table 3 

Sensltlvlty check on P(t,, to).” 

a a0 a1 ci4 0, 0, 

1.3591 0.00756 - 0.2891 0.2897 0.06741 0.15600 

(kO.5367) (kO.00929) (+_0.1390) (kO.1275) (~0.00657) (+0.01597) 

1.3702 0.00755 -0.2865 0.3162 0.0674 0.1559 

(+0.5388) (fO.00927) (kO.1394) (kO.1353) (+0.00655) (io.o1594) 
1.3740 0.00755 -0.2855 0.3284 0.0674 0.1558 

(k0.5399) (+0.00927) (k0.1396) (i0.1422) (+0.00656) (kO.0159) 

1.3746 0.00755 -0.2853 0.3304 0.06740 0.1558 
(kO.5408) (+0.00925) (k0.1394) (k0.1431) (+0.00653) (kO.0159) 

“Asymptotic estimates of standard errors are in parentheses. 

stochastic specification for the evolution of c, [i.e., (2.33)] and the increasing 
value of the CJ~ estimates.13 

Table 3 presents the results of a sensitivity check. Referring back to the 
description of the estimation algorithm, it is clear that the values of all state 
variables estimates and variances [see (3.6)-(3.12)] depend to an extent on 
the assumed prior. In turn, from the manner in which the loss function (3.13) 
is constructed, the influence of the assumed prior may carry through all the 
parameter estimates. If the sensitivity to the prior is high, then all our 
estimates must be viewed as highly conditional. Furthermore, this potential 
problem would be expected to be great for short duration bubbles, i.e., when 
T--to is small, since then the solution to the difference equations for -i-(t, t) 
and P(t, t) will be most influenced by their initial conditions. Therefore, a 
‘worse case’ situation was studied: estimation of the January 1923-June 1923 

bubble. Four different prior distributions were considered, ranging from a 
certain prior centered on i(t,, to) =U to one approximating a diffuse prior 

centered on the same state value. As can be seen from the table, the only 
perceptible variations in the estimated parameters are found in u and By. The 
total percent change in a amount to about l.l%, while that for crl is about 
14%. At the same time, the range in P(t,, to) is over several orders of 
magnitude. Further increases in the diagonal of P(to, t,) produced negligible 

131n the stochastic model for the c, process, (2.12), it is possible to have a significant q for 
some t> t, while c, is insignificant for t=t, because of the presence of p(t). This is not the case, 
of course, in a deterministic model for c,, as in (2.12) when the q(t) term is removed; in this 
instance a significant c, for some t>t, must be accompanied by a statistically significant 
estimate of c, at t = t,. 
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variations in the parameter estimates. Sensitivity to the assumed prior does 
not appear to be a problem. 

Fig. 1 depicts the trajectories of c, produced by application of the 
smoothing algorithm to the model with the parameters given in table 1. 
Table 2 presents the c, estimates plotted in this figure, together with the 
corresponding estimated error variances. 

The presence of significant c, estimates in the stochastic case, prompted a 
further estimation of the model under a restriction corresponding to a 
deterministic evolution for the c,‘s. More specifically, the model was re- 
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Fig. 1. Smoothed estimates for c, (stochastic) 
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Table 5 

Smoothed estimates for cl and its error variance (deterministic case). 

‘Bubble’ dates 

t/19-6/23 

10/19-6123 

7/20-6123 

612 t-6123 

6122-6123 

l/23-6/23 

Cl” var(c,J CT 

0.204 x IO-” 0.790 x lo-r8 0.3816 

0.123 x lo-’ 0.273 x lo-r6 0.3903 

0.916 x lo-’ 0.146 x lo-l4 0.4006 

0.164 x 10m5 0.438 x 10-r’ 0.4170 

0.991 x lo-4 0.147 x loms 0.4453 

0.349 x lo-* 0.171 x 10-5 0.4714 

var (c~) 

0.0277 

0.0278 

0.0279 

0.0284 

0.0297 

0.0312 

estimated with cr,, constrained to zero. If large estimates for eV led to 
insignificance of the q’s, as was the case for the last two bubbles, then 
restriction of CJ,, to zero should produce significant c, in all instances. 

Tables 4 and 5 and fig. 2 summarize the results of this re-estimation. As in 
the previous estimation using the second-order money growth rate model, 

(3.5) convergence of the iterative estimation procedure was achieved in each 
instance. In addition, all residual series passed their whiteness tests. 
Parameter estimates are given in table 4 and reveal an interesting variation 
in the estimates for a, CI~, and ep. Table 5 presents the smoothed estimates for 
the terminal and initial values of c,‘s and its estimation error variance.14 In 
each case the q’s are significant under the usual normal distribution 
assumption. 

5. Conclusions 

In summary, our empirical evidence strongly suggests that for this model it 
is impossible to maintain the common assumption that rational expectations 

are always convergent. This conclusion is most disturbing in large part 
because it means that the actual price at each t may be indeterminate 
without some additional assumption to determine the c,‘s. One solution to 
this difficulty having considerable intuitive appeal to many economists 
involves a slow price adjustment mechanism which might determine the 
initial condition by p*(O, 0) =p(O), where p(O) is historically given. However, 
the issue of stochastic determinacy must be left as unresolved for now. 

14Under the restriction of cr,=O, the smoothed estimates of cl and P,,(t, T) become mere 
backward extrapolations of a,(rr;T) and PII( Thus, the smoothed estimate of c, (tc7’) is 
obtained from i,(t, T)=(l+ l/a)‘~ra,(7; T) while the smoothed estimation error variance is 
obtained from Pl,(t, T)=(l+ I/a) ‘(‘~r)PI1(?; 7’). See Anderson and Moore (1979, pp. 187-190) 
or Jazwinski (1970, pp. 215-218) for details. 
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Fig. 2. Smoothed estimates for c, (deterministic). 

It is important to recognize that the issues we have raised in this paper are 
not restricted to the simple monetary model of inflation studied here. The 
fact that identical conceptual issues arise in more complex rational 
expectations models of the Lucas-Sargent type is evident from the analysis of 
Burmeister (1980, 1982) and Burmeister, Flood and Turnovsky (1981). 

Our preliminary work has left us with several unanswered questions. One 
should investigate whether or not the assumption of known and constant 
parameters is justified, and it is important to test alternative specifications for 
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the money supply function which include, for example, the variable p*(t + 1, t). 
Likewise one might try alternative specifications for the stochastic c, 

process. 
Our primary conclusion is that estimation techniques which impose 

restrictions implied by the assumption of convergent expectations, and which 
therefore are conditional upon this convergent expectations assumption, are 
suspect without additional verification of the underlying stability hypothesis. 

We have demonstrated the feasibility of an alternative estimation 
methodology which does not preclude the possibility that rationally formed 
expectations are unstable. We have shown how to test an important 
hypothesis and to obtain parameter estimates which are not conditional 
upon a perhaps invalid stability assumption. 
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